
ZoneDroid: Control your Droid through
Application Zoning

Md Shahrear Iqbal and Mohammad Zulkernine
School of Computing

Queen’s University, Kingston, Ontario, Canada
{iqbal, mzulker}@cs.queensu.ca

Abstract—Research has shown that the android permission
model was insufficient for providing protection against malicious
behaviors of the untrusted third-party applications. To improve
this scenario, Google modified the permission model in the
recent Android version. However, in our analysis, it is still not
an ideal option to enforce fine-grained access control.

In this paper, we propose an extension and implementation
of the Android permission model, ZoneDroid, to control a set of
applications easily by creating multiple application zones (i.e.,
application groups). It is an approach to control application
groups by modifying the Android permission model. All other
previous approaches focused on restricting individual applica-
tions or creating separate user profiles. ZoneDroid minimizes
security and privacy risks with a finer granularity of restric-
tions. Users can also control multiple devices using the cloud.
Different zones (high privilege, trusted, new, restricted, etc.)
have different runtime policies and enforce fine-grained access
control. The ability to control application groups efficiently can
be a valuable addition to the existing Android permission model.

Experiments show that ZoneDroid is effective against infor-
mation leak and it can protect the device from becoming a
part of a botnet. ZoneDroid offers much less user action when
controlling multiple applications and its performance overhead
is negligible.

I. INTRODUCTION

During the last few years, smartphones have been replacing
traditional mobile phones. Smartphone sensors, third party
applications and the availability of the mobile internet have
increased the risk of security and privacy significantly.

Among all the smartphone operating systems, Android
alone occupies over 86% market share in the second quarter
of 2016 [1]. Moreover, Android-powered devices such as
cars, fridges, televisions, point of sale (POS) terminals, and
ATM booths are expected to flood user markets within a
few years. Unfortunately, up until October 2015, Android’s
permission model was an “allow all or no install” model.
There was no way to revoke a permission once an app is
installed without uninstalling the app. From Android Marsh-
mallow (version 6.0), Google adopted the iOS approach and
now, some of the sensitive permissions can be revoked after
installation.

Operating systems normally trust applications once they
are installed by the users. However, in our view, different
applications need different levels of trust. Sometimes, a group
of applications may require a similar level of trust. For
example, untrusted third-party apps require a stricter control
over them than the apps from the trusted sources. Also, if

a user has multiple devices, he or she may want to apply
the same fine-grained policies to some of his or her other
devices. However, the existing permission model of Android
is not sufficient for providing all these features.

In [2], we proposed a secure anti-malware framework
for the smartphone operating systems (SAM) based on the
concept of smart cities. In the smart city wheel proposed
in [3], a smart city has smart people, smart environment,
smart government, smart economy, smart living, and smart
mobility. Similar to a smart city, the phone will have smart
apps, smart application zones, smart framework manager,
smart access control, smart protection, and smart mobility.
The framework manager will act as the government and
other components will prevent malicious activities as well
as monitor, report, and control malware.

In this paper, we propose an extension of the Android’s
permission model which we call ZoneDroid. ZoneDroid
implements the concept of application zones which is a part
of the prevention techniques proposed in our smartphone
anti-malware framework. The separation of application zones
is analogous to the separation of industrial and residential
areas in an urban city. Each area may have their own security
policy and a person has to adhere to the policies based on his
or her location. ZoneDroid provides an efficient solution to
control a group of applications easily (e.g., block a number
of applications from accessing the internet from 12 am to 7
am with a few touch). It acts like a sandbox for a group of
applications.

In an Android device with ZoneDroid, applications reside
in any one of the zones and must adhere to the policies of
that zone. Users can create and modify zones and policies
and easily move applications from one zone to another. Any
device of a user can control all of his or her other devices
(e.g., control an Android tv’s policy with the smartphone).

ZoneDroid can also be effective against a number of
malware that steal users’ confidential information or misuse
the services of smartphones. Normal users are victimized by
attackers who often disguise malware in seemingly useful
apps. These malware compromise security and privacy, gain
control of the user devices and often become a part of
a botnet. Billions of Android devices can be used as a
cyber weapon to launch large-scale attacks without the users’
knowledge (e.g., click-fraud, DDoS, and email spam). Using
ZoneDroid, users can block internet access to cripple the bots

while continue using the functionalities that do not require
internet access. It is worth mentioning that internet access
cannot be restricted using the current version (7.0 Nougat)
of Android. An efficient fine-grained access control can also
limit the effect of malicious apps in smartphones.

In particular, We design ZoneDroid to create multiple
application zones with different levels of constraints and
enforce fine-grained access control. ZoneDroid supports a
way to easily manage multiple devices. Also, zone and policy
configuration files can be shared between users. Novice users
can then download configuration files and apply to their
own custom zones. ZoneDroid offers an increased protection
against a number of malware that try to steal private
information or misuse smartphone services. We evaluate a
prototype of ZoneDroid and the result shows that it adds
useful features to the existing permission model while not
affecting the performance.

The remainder of the paper is organized as follows.
Section II provides the necessary technical background on
Android’s permission mechanism. Section III presents our
proposed extension of the permission mechanism. We illus-
trate the design and operation of ZoneDroid in Section IV.
We evaluate ZoneDroid in Section V and describe the related
work in Section VI. Finally, we conclude in Section VII with
a little discussion on the limitations and future work.

II. PERMISSION IN ANDROID

Android uses permissions to protect components, system
APIs, and resources. A permission is simply a unique text
string. There are currently 138 permissions [4] defined in
the Android operating system. In addition to the Android
defined permissions, application developers can also declare
their own customized permissions to protect their sensitive
resources.

A permission can be associated with one of the fol-
lowing four protection levels [5]: Normal, Dangerous,
Signature, Signature-or-system. According to devel-
oper.android.com, normal permissions are low risk
permissions and dangerous permissions are for user’s private
resources.

Previously, at install-time, a user is shown with a list of
permissions. The user must either grant or deny all of these
permissions together. After the user approves the permission
request and installs the application, the application owns
its permissions throughout its lifetime. There is no way
to revoke a permission other than to uninstall the app.
However, from Android Marshmallow (version 6.0), Google
changed the permission model. Now, “normal” permissions
that an application asks are given at install time (the list of
permissions is not shown to the user anymore). However,
for dangerous or system permissions, users are notified at
runtime. An application can continue only when the user
allows the requested permission. More importantly, now users
can revoke dangerous or system permissions later.

All “dangerous” permissions belong to some groups. To
minimize user interaction, Android allows all the permissions

belong to a group if the user allowed one of the permissions
of that group previously. For example, there are seven
permissions in the PHONE group. If an app asks for any
of the seven permissions and the user allows it, then all
the other six permissions in the PHONE group will be
automatically allowed for that specific app in the future.

A. Permission enforcement techniques

In this subsection, we explain how the Android permission
mechanism actually works to restrict access to resources. In
Android, each application is assigned a unique user id (UID)
in contrast to traditional desktop operating systems where
applications execute with the privileges of the invoking user.
Based on the UID, Android enforces access control rules
which govern the application sandboxing.

Android enforces access control in two levels. In one
level, the system_server process (in Android frame-
work) ensures that the calling component has the necessary
permission. In another level, 16 permissions as defined in
the platform.xml are enforced by the underlined Linux’s
discretionary access control (DAC) mechanism. We call these
permissions granted permission.

When an application process is created by the activity
manager, it maps the granted permissions to the correspond-
ing groups. The group ids are then passed to the zygote
process which forks itself and set appropriate group ids.
Zygote is a daemon which is started by the system init
and responsible for the creation of new processes. These
permissions are given to the virtual machine process and
dynamic permission checks will not occur for some of these
permissions. As an example, the INTERNET permission in
Android is mapped to the Linux inet user group and
consequently, internet access is controlled by the underlying
Linux kernel. For that reason, internet permission cannot be
blocked by modifying the Android framework.

III. AN EXTENSION TO THE PERMISSION MECHANISM

Our long-term research goal is to make the operating sys-
tem malware-aware. There will be surveillance and detection
components of the operating system that will use ZoneDroid
to automatically assign zones to the installed apps and move
them from one zone to another when necessary. This will
minimize user interaction and require less user knowledge
about the maliciousness of the apps. The system will ask
users only necessary security decisions and avoid showing
them all permission requests. In this work, we explore the
problem space in two parts. First, we extend Android’s
permission model to accommodate fine-grained permissions.
Then, we implement the model as a part of the Android
framework. In this section, we describe how we extend the
existing Android permission model.

To accommodate fine-grained permissions, we define rules,
policies, application zones, and zone policy enforcer.

A rule makes an existing permission more fine-grained.
For any permission, it allows to add a number of restrictions

based on time, phone number, folder path, or any custom
counter (e.g., the number of SMSs sent).

Definition 1. Rule. A rule r takes the form (o, V , e), where
for a permission option o, we can denote a set of attributes
and values and an action e. Here, V is a set of 2-tuples of
the form < attribute, value >.

For example, the rule (send sms, {<time, 8am to 5pm>},
deny) restricts apps in a zone to send SMSs from 8AM to
5PM.

A policy consists of a number of rules. In other word, a
policy can enforce fine-grained access control to more than
one permissions.

Definition 2. Policy: A policy p is a set of rules R that
defines the conditions under which an application is granted
a number of permissions. A policy checker function Fpc(o)
is defined as r1∧r2∧r3∧· · ·∧rn → {permit, deny}, where
o is a permission and n is the number of rules in the policy.
In the case of a conflict, the rule with a deny will prevail.

Each application must belong to a zone where each zone
enforces a number of policies.

Definition 3. Zone: A Zone z = (L,P,Az) is defined by a
label L, a set of policies P , and a set of Applications Az . An
application in the device can be assigned to only one zone at
any given time. A zone association function Fz(a) : A → Z
maps an application to a unique zone, where A is the set
of applications and Z is the set of zones. Another function
Fp(z) : Z → P returns all policies associated with the zone
z.

The Android system_server consults with the zone
policy enforcer before allowing any permissions. It enforces
fine-grained access control to all the applications that belong
to a particular zone.

Definition 4. Zone Policy Enforcer. The zone policy enforcer
Zpe defines the complete set of conditions under which an
application a1 in zone z is allowed to call another component
c or system API s. a1 can communicate with c or s if and
only if either 1) there is no policy associated with the zone
that denies the permission required by c or s or 2) there is
no permission associated with c or s or 3) the permission
associated with c or s is a normal permission and is already
granted or 4) the user has already granted the permission
required by c or s.

IV. ZONEDROID DESIGN AND OPERATION

Based on the definitions described in the previous section,
we implement ZoneDroid. ZoneDroid consists of three parts:
the Android framework components, the ZoneDroid app and
the multi-device management using the cloud. In Figure 1,
we show the components of ZoneDroid and how they interact
with each other. ZoneDroid framework components are Zone-
Droid manager, zone and policy service, zone policy enforcer,
and an SQLite database “Applications, Zones and Policies”.

The last three components are placed in the protected area
of the framework. They cannot be accessed directly from
the upper layer components. In addition, ZoneDroid adds a
number of hooks to the activity and package manager. The
ZoneDroid app is an administrative app that resides in the
“High privilege app zone”. Users can control their zones
and policies and enable cloud synchronization using the app.
Cloud enables a user to control multiple devices from any
other devices. In the following subsections, we provide the
details of these components.

Zone Policy

Enforcer

Zone and Policy

Service

Android

Application Framework

High Privilege App

ZoneApp 2

New App Zone

App 1

Applications,

Zones and

Policies

ZoneDroid App

ZoneDroid ManagerPackage Installer

Permission Checker

Package Manager

Protected Area of

the Framework

Start Process

Activity Manager

Multi-Device

Management

Fig. 1: ZoneDroid Architecture.

A. ZoneDroid Manager
In Android, apps cannot access system services directly

because of the sandboxing. As a result, we implement
ZoneDroid manager as an interface between the protected
and external components (e.g., the ZoneDroid app). The
manager and the zone and policy service communicate
using the binder IPC mechanism. By default, when a user
starts his or her phone for the first time, the ZoneDroid
manager creates the following zones: New App Zone, Trusted
App Zone, High Privilege App Zone, Restricted App Zone,
Uninstalled App Zone. In the new app zone, a number
of dangerous permissions are blocked. A user can send a
malicious app to the “Restricted App Zone” where all the
sensitive permissions are blocked. Here, we like to mention
that the movement of apps from one zone to another is
recorded in the SQLite database of ZoneDroid. We do not
move the application’s code or data physically.

B. Zone and policy service
The zone and policy service is implemented as a protected

system service that starts with the system init and cannot
be blocked or stopped by the user or any other third party
apps. Stopping this service will crash the operating system.

The zone and policy service is responsible for creat-
ing/editing/deleting policies and zones. We store the zone
information along with their associated apps and policies in
the SQLite database.

C. Zone policy enforcer
The zone policy enforcer enforces the zone policies to

the applications in that zone. We insert a number of hooks
to the existing Android framework so that before allowing
any permission, the Android permission mechanism calls the
ZoneDroid manager to validate it. The manager, in turn,
calls the checkZonePermission function of the policy
enforcer to decide whether a given permission should be
allowed based on the zone policies.

We also hook the Android package installer so that when a
user installs an app, the package installer calls the ZoneDroid
manager to register the app in the “New App Zone”. The
policy enforcer divides all the android permissions into three
groups, namely, runtime permissions, granted permissions
without the internet, and the internet permission. For each
group, it enforces the policies in a different way. The details
are given below.

1) Allowing runtime permissions: For all runtime permis-
sions, Android verifies that the permission is granted for the
application and it is not currently being revoked by the user.
We implement a hook just before Android’s own permission
check so that the permission can be denied if it is not allowed
according to the zone policies. Applications will not crash
in this case. Rather, they will ask for the permission again
gracefully. However, the access will be denied until the user
removes the policy blocking the access or moves the app to
a different zone where the permission is allowed.

2) Allowing granted permissions: ZoneDroid controls the
“normal” granted permissions by hooking the process cre-
ation method of applications. It modifies the gids (Linux’s
supplementary group id) that the activity manager uses
to fork zygote and create a new application instance.
These gids are calculated from the application’s requested
permissions. We hook the function startProcessLocked
from the activity manager service to remove all the gids
that are not allowed in the zone. One problem with this
approach is that the application will crash when it attempts
to use the removed functionality. For example, if a user
blocks Bluetooth for a set of apps, the activity manager will
not send the “net_bt” group id to zygote. As a result,
these apps will crash if they try to access Bluetooth in the
specified time period of the policy.

3) Allowing internet permission: Although internet per-
mission is one of the granted permissions, we treat this
permission differently. In our view, it is a very dangerous
permission that the users may want to restrict. However, we
do not want the apps to crash as unsetting the inet group
will make them crash everytime they try to access internet.
Accessing internet for various reasons is very common in
modern apps and we want the user to continue using the apps
to access other functionalities. Also, we want a finer control
over the internet connection similar to the runtime permis-
sions. For example, we want to block internet for a specific
time of day in a zone. To make this scenario possible, we
use the time module of the iptables [6] tool. In this
case, the apps will not crash. However, any internet request

will timeout in the specified time period. Consequently,
ZoneDroid does not allow the SET TIME permission for
any third-party applications so that apps cannot change the
device’s time. Since the modification of iptables rules
requires root privilege, we implement a utility service for
that. The service starts with the system init and performs
the necessary modifications to the iptables rules. The zone
policy enforcer sends the modification requests to this utility
service.

Multi-Device Management

using Cloud Technology

Zone and Policy

Repository

Fig. 2: ZoneDroid’s multi-device management architecture.

D. Multi-device management

In Figure 2, we demonstrate the multi-device management
functionality of ZoneDroid. There are three modules in
this component, namely, authentication, zone and policy
repository, and logging and reporting. First, we have the
authentication module. It authenticates the ZoneDroid app so
that the app can continue communicating with the cloud.
The authentication module uses the device credentials and a
password to authenticate a device. Second, there is a zone
and policy repository that stores device specific zone and
policy configuration files. A user will be able to view and
edit zones and policies of any of his or her devices. Third,
there is a logging and reporting module that logs all activities
of the ZoneDroid app. Also, the framework components
are programmed to send periodic health messages to the
logging system. It is worth mentioning that the multi-
device management functionality will only be available if
the user turned on the cloud synchronization feature using
the ZoneDroid app. When a user turns on the feature, the
ZoneDroid app sends all the configuration files from a user’s
device to the cloud server. The server also notifies the
ZoneDroid app when a new configuration is available for
a device. Users can also share the policy files which can be
downloaded and applied to a zone.

E. ZoneDroid app

The ZoneDroid app is the interface of ZoneDroid. Users
can browse the existing zones and policies using the app.
It provides functionalities to create/edit/delete zones and
policies. The app keeps a list of permissions that the user can

block with rules. After creating a number of policies, a user
can create multiple zones, each with different policies. Then,
a user can move a set of applications to a zone to apply
the policies to the set. By turning on cloud synchronization,
users will be able to view and modify zones and policies
of other devices too as described in the previous subsection.
If the ZoneDroid app finds an updated version of policy or
configuration files, it downloads the information and applies
to the local database. Here, we like to mention that the
Android framework always consults with the local database
of ZoneDroid.

V. IMPLEMENTATION AND EVALUATION

In this section, we evaluate ZoneDroid in terms of access
control, usability, and operational overheads. We implement
a prototype of ZoneDroid by modifying the Android Open
Source Project (Marshmallow version 6.0.0 r1 MRA58K as
of 2015/10/17). We use ODROID c1+ [7] as our development
board. ODROID c1+ is an ARM device from the company
Hardkernel [8] and it has Amlogic Cortex-A5 1.5 GHz quad-
core CPU, Mali-450 MP2 GPU, and 1 GB DDR3 SDRAM.
We implement the multi-device management functionality
using a Microsoft Azure PAAS Instance (Model D2: 2 Core,
7GB RAM, 100GB SSD, Windows Server 2012) and an
Azure SQL DB Instance (2 TB).

In our opinion, ZoneDroid is easily deployable. Other
than the Google Nexus lines of devices, all manufacturers
ship their own versions of Android. They provide a custom
experience of Android which requires modifications to the
AOSP project. The modifications required for implementing
ZoneDroid framework components can be applied to the
AOSP project using our patch which is only 502.9KB in
size. Notably, we modified features which are only available
from Android Marshmallow. As a result, ZoneDroid can be
implemented in Android version 6.0 and above. However,
this does not impact the execution of apps that are developed
for older versions of Android.

Resource name Protected by
ZoneDroid

Protected by
Existing Android

Bluetooth X x
Internet X x
Infrared X x
Network State X x

TABLE I: A limitation of the existing permission model in
restricting access to certain resources.

A. Fine-grained access control

To demonstrate the limitations of the existing permission
model and the effectiveness of ZoneDroid’s fine-grained
access control, first, we show a number of resources that
ZoneDroid can protect while the existing permission cannot.
After that, we show how fine-grained permissions add useful
features to the existing permission model.

Table I lists a number of resources that the existing
permission model cannot protect. These resources require

Scenario
Restricted

by
ZoneDroid

Restricted by
Existing
Android

1
Restrict a number of apps
to send SMS/call to a list
of numbers

X x

2
Restrict internet access to
a number of apps from
11pm to 9am

X x

3 Block calls from a specific
number from 11pm to 8am X x

TABLE II: Examples of fine-grained access control scenarios
that the existing permission model fails to offer.

permissions that belong to the “normal” permission group.
In our view, these resources are sensitive and there should
be a way to restrict access to them. ZoneDroid can protect
these resources from the third-party untrusted apps using
appropriate zone policies.

As mentioned before, the existing Android permission
model is not fine-grained. For example, a user may install a
third-party audio recorder and a news app for extra features.
However, he or she may not want to allow the access to
microphone and internet all the time. There is no way to
limit their access based on time using the existing permission
model. Using ZoneDroid, a user can create a zone and a
policy with two rules restricting the access. In Table II, we
demonstrate a number of similar scenarios where fine-grained
access control adds value to the existing model.

B. Usability

To show that ZoneDroid is easier to use, we choose a
number of resources that we want to protect. These resources
require dangerous permissions and enforced by Android’s
runtime permission check. We download 12 apps from
https://apkpure.com/ that access the resources. In
Table III, we list the resources and the apps. In the existing
model, the user has to perform permission revoking for each
app separately (5 permissions for 12 apps, 60 taps). Using
ZoneDroid, the user can create a zone with the selected apps
and apply a single policy (with five rules, listed in Listing 1).
This illustrates the fact that ZoneDroid can protect resources
with fewer user interactions. No apps were crashed during
this test.

1 {READ PHONE STATE,{<TIME ALWAYS> ,DENY}
2 {ACCESS FINE LOCATION,{<TIME ALWAYS> ,

DENY}
3 {READ CONTACTS,{<TIME ALWAYS> ,DENY}
4 {GET ACCOUNTS,{<TIME ALWAYS> ,DENY}
5 {SEND SMS,{<TIME ALWAYS> ,DENY}

Listing 1: A policy with five rules.

1) Attack scenarios where ZoneDroid can be effective:
Since Android is used in a myriad of devices (smartphone, tv,
set-top box, POS terminal, ATM machine, etc.), the malware
threat is growing at a rapid pace. Nowadays, malware

Resource Permission Apps in the zone
IMEI READ PHONE STATE com.bigos.androdumpper, in.codeseed.audify, org.eyeslave.bdradio,

com.llapps.blendercamera, com.turner.pocketmorties,
com.appthink.deeplifequotes, HinKhoj.Dictionary, fm.clean,
com.emu.dream, com.bookmark.money, com.chmodsoft.perfectvocal,
de.ub0r.android.smsdroid

Phone # READ PHONE STATE
location ACCESS FINE LOCATION
contacts READ CONTACTS
account GET ACCOUNTS

SMS/MMS message SEND SMS

TABLE III: Usability test of ZoneDroid.

writers want to misuse the existing functionalities (call, SMS,
internet, etc.) of a device or sell user information.

ZoneDroid’s application zoning and custom policies can
restrict eavesdrop and information stealing. By default, Zone-
Droid installs all the new applications in a restrictive “new
app zone”. Users need to manually move the applications
to a different zone if he or she wants any particular high-
privilege feature. This process makes the user more cautious
about the app and its permissions.

Internet users are often victimized by malicious attackers.
Some attackers infect and use innocent users’ machines
(by making them a part of a botnet) to launch large-scale
attacks without the users’ knowledge. Similar to the desktop
computers, smartphones can also be a part of such botnets
and help launch large-scale low noise attacks (e.g., DDoS,
click-fraud). Botnets can be thwarted by restricting internet
usage of apps that do not need the internet for their core
functionalities. In existing version of Android, users can not
block internet access. To show ZoneDroid’s effectiveness
against botnets, we create a simple number game which
performs click-fraud [9]. We install the app in an Android
TV which remains on 24/7. The existing permission model
of Android will allow the app to perform illegal activities
using the internet. ZoneDroid provides an easy way to
block the internet for the app (running on the Android TV)
from a smartphone. The app can continue to provide its
functionalities while all its internet requests time out.

2) Apps built for older versions of Android: ZoneDroid
does not negatively affect older apps. We install 21 apps
built for older versions of Android and execute them in
our device. As long as they are given the permissions
they ask, the apps execute without any problem. However,
from Android Marshmallow, older apps crash if any of the
sought permissions is denied by the user. It is the behavior
of Android from version 6.0 and has nothing to do with
ZoneDroid.

C. Operational overheads

In this subsection, we evaluate ZoneDroid in terms of per-
formance, power consumption, memory, and storage usage.
In each case, we show that there is a very little to negligible
overhead. ZoneDroid efficiently acts as a virtual sandbox for
a group of apps.

We quantify performance using a popular benchmarking
app (AnTuTu) available from the Android stores. The app
tests CPU and memory performance, 2D/3D graphics, Disk
I/O, Multitasking, etc. It gives a score for each test which can

be used to compare relative performance between devices.
All numbers from the benchmarking app are averaged over
10 runs unless stated otherwise. We also evaluate the running
time of the checkZonePermission function which is the
only function that is called repeatedly while the device is
running.

The benchmarking app runs concurrently with the standard
set of Android 6.0 apps that launched at boot. Based on the
official Android source code (6.0), these apps are launcher,
contacts (and its provider process), photo gallery, dialer,
MMS, and settings. Vendors customize this list and add more
apps. On our ODROID c1+, there were 23 apps (including
standard apps) on the device when we run the benchmarking
app. We do not kill any pre-loaded apps.

Test Group Test Score
Stock ZoneDroid

UX Multitask 3022 3127
Runtime 1357 1377

CPU

CPU integer 1546 1563
CPU float-point 1477 1512
Single-thread inte-
ger

1125 1151

Single-thread float-
point

952 973

RAM RAM operatin 1378 1405
RAM speed 1586 1554

GPU 2D graphics 869 892
3D graphics 2474 2507

I/O Storage I/O 1459 1680
Database I/O 625 620

Total 17870 18361

TABLE IV: Individual test scores from the AnTuTu bench-
mark app.

1) Performance: ZoneDroid’s main performance overhead
results from the zone policy enforcement mechanism. Ev-
erytime Android checks for a permission, our hook in
the checkPermission function will execute the function
checkZonePermission from the zone policy enforcer.
To measure ZoneDroid’s overhead, first, we run the An-
TuTu [10] benchmarking app on the stock (unmodified) and
ZoneDroid version of the Android marshmallow.

We run the tests a number of times and find no significant
difference in the test scores. Table IV shows the comparison
of scores resulted from the benchmarking app. It is clear
from these scores that the overall performance is not
hampered by activating ZoneDroid.

2) Power consumption: As smartphones are limited in
battery capacity, we measure the overhead of ZoneDroid
in terms of power consumption using the ODROID smart

power [11] which is a dc power source. However, it has a
data output port that provides the consumed power at the
rate of 10Hz. We install a contact app and access contacts
every 3 seconds for a period of 24 hours for both the stock
and the modified versions. We use a UI automation tool [12]
to automate the process.

We find that the stock version consumed 6336
milliampere-hour (mAh) and the ZoneDroid version con-
sumed 6720 mAh during that period. This is an extreme
scenario where we access the zone policy enforcer every
3 seconds for 24 hours. Nonetheless, the difference in
the measured power is within an acceptable limit in our
understanding. Nowadays, smartphones are often equipped
with a 3000 mAh battery and ZoneDroid will not hamper
the battery life of an average user.

3) Memory and storage: With the current implementation,
ZoneDroid does not incur any memory overhead. We modify
only two system files, namely, framework.jar and services.jar.
However, the changes in sizes (2.76K bytes for the frame-
work.jar and 11.15K bytes for the services.jar) of the two
files are negligible. To examine the size of the “Applications,
Zones and Policies” SQLite database, we install a total of 99
apps and create three policies with different rules. We find
that after installing the apps the size of the SQLite database
is 49.1K bytes. Nowadays, most devices are equipped with
16 or more gigabytes of storage space. As a result, in our
opinion, ZoneDroid’s storage requirement is negligible.

VI. RELATED WORK

Some research papers reported the analysis of the Android
permission model [13]–[17] and identified some of its
shortcomings. Their study highlights that the permission
model was coarse-grained and not very user customizable. In
response, researchers proposed different types of extensions
to enhance the security of the Android operating system.
Most of the solutions proposed in the literature (e.g., [18]–
[24]) require modification to the Android framework and/or
the underlying Linux kernel. In contrast, some other so-
lutions [25]–[30] proposed an alternative approach that
integrates security policy enforcement into the application
layer. ZoneDroid belongs to the former category.

Apex [31] modified the Android permission system to
constrain runtime app behavior. However, there are a number
of differences between Apex and ZoneDroid. First, the
permission model for which Apex was designed is changed
now. Also, the main objective of Apex is to restrict the usage
of phone resources per application. We exclusively focus on
the creation of application zones so that a user can control
a set of applications easily.

Smalley et al. [32] implemented the mandatory access
control (MAC) in Android. They showed that the mandatory
access control is able to thwart some of the well-known
malware attacks reported in the literature. Though the
mandatory access control (MAC) provides a fine-grained
access control, many Android malware are over privileged
and they cannot be blocked by MAC.

Lange et al. [33] implemented a generic operating system
framework for secure smartphones called “L4Android”. Their
framework hosts multiple virtual machines to separate secure
and non-secure applications. Each VM hosts its own version
of Android. L4Android mainly focuses on the security
of the sensitive applications. Moreover, it relies on the
hardware virtualization support, which is not yet practical
for smartphones. Several other authors [24], [34], [35]
proposed virtualization-based techniques to better sandbox
Android apps that require modification to the Android
framework. However, in Boxify [36] and NJAS [37], the
authors proposed a sandboxed execution of Android apps on
an unmodified system. Although ZoneDroid requires a little
modification to the Android framework, it does not use any
virtualization technique which is heavy on hardware.

Wang et al. [38] proposed an enterprise-level security
policy enforcement mechanism DeepDroid, through which
enterprise administrators can dynamically enforce fine-
grained access control policies. Their design is specific to
the enterprise environment and they enforce policies per
application. A number of similar solutions target governments
and enterprises [9], [24], [34], [39]. ZoneDroid is designed
for the end users who have multiple Android devices and
want to control a group of apps easily on all devices.

VII. CONCLUSION AND LIMITATIONS

Android is the most popular smartphone operating system
and its usage is continuously increasing. Moreover, com-
panies are releasing many other devices with Android. As
a result, security and privacy is a major concern among
Android users. Unfortunately, current Android security model
does not allow a user to enforce fine-grained access control.

In this paper, we present an extension of the existing
Android permission model, ZoneDroid, to group Android
applications and implement the concept of zoning. It provides
a virtual sandboxing mechanism for a set of applications with
no performance overhead. Applications reside in any of the
zones and ZoneDroid controls all of them by applying fine-
grained policies. ZoneDroid can restrict access to resources
based on time, phone number or folder location. We modify
the Android permission mechanism and add a number of
new Android framework components. We also develop a
cloud backend for the system so that the users can view
and control policies and zones of more than one devices.

Suspicious or untrusted apps can be grouped easily using
ZoneDroid. Our experiments suggest that grouping and
restricting (with fine-grained access control) similar untrusted
third-party apps minimizes the risk of information leak and
the risk of unknowingly becoming a part of a botnet.
Additionally, it requires fewer user interactions to control
apps when they are grouped.

ZoneDroid assumes that users are knowledgeable about
the activities of the installed apps and will create zones
according to their needs. However, ZoneDroid is a part of
our anti-malware framework and we are currently working
on adding monitoring and behavioral analysis functionality to

Android so that it can monitor the application behavior and
automatically move apps to different zones using ZoneDroid.

ACKNOWLEDGMENT

This work is partially supported by the Natural Sciences
and Engineering Research Council of Canada (NSERC) and
the Canada Research Chairs (CRC) program.

REFERENCES

[1] V. Woods and R. van der Meulen, “Gartner says five of top 10
worldwide mobile phone vendors increased sales in second quarter of
2016,” http://www.gartner.com/newsroom/id/3415117, accessed: 2016-
04-20.

[2] M. S. Iqbal and M. Zulkernine, “Sam: A secure anti-malware
framework for smartphone operating systems,” in Proceedings of the
IEEE Wireless Communications and Networking Conference (WCNC
2016). IEEE, 2016.

[3] B. Cohen, “What exactly is a smart city?” http://www.fastcoexist.com/
1680538/what-exactly-is-a-smart-city, accessed: 2015-03-06.

[4] “Android permission,” http://developer.android.com/reference/android/
Manifest.permission.html, accessed: 2016-08-30.

[5] “Android permission categories,” http://developer.android.com/guide/
topics/manifest/permission-element.html, accessed: 2015-11-09.

[6] G. N. Purdy, Linux iptables pocket reference. O’Reilly Media, Inc.,
2004.

[7] “Odroid c1+,” http://www.hardkernel.com/main/products/prdt info.php?
g code=G143703355573, accessed: 2015-07-09.

[8] “Hardkernel,” http://www.hardkernel.com/main/main.php, accessed:
2016-02-03.

[9] M. S. Iqbal, M. Zulkernine, F. Jaafar, and Y. Gu, “Fcfraud: Fighting
click-fraud from the user side,” in Proceedings of the 16th IEEE
International Symposium on High Assurance Systems Engineering
(HASE 2016). IEEE, 2016, pp. 157–164.

[10] “Antutu benchmark,” http://www.antutu.com/en/index.shtml, accessed:
2016-02-09.

[11] “Odroid smart power,” http://www.hardkernel.com/main/products/prdt
info.php?g code=G137361754360, accessed: 2015-07-09.

[12] “Android view client,” https://github.com/dtmilano/AndroidViewClient,
accessed: 2015-07-09.

[13] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android
permissions demystified,” in Proceedings of the 18th ACM Conference
on Computer and Communications Security. ACM, 2011, pp. 627–
638.

[14] T. Vidas, N. Christin, and L. Cranor, “Curbing android permission
creep,” in Proceedings of the Web 2.0 Security and Privacy workshop
(W2SP) 2011, vol. 2, 2011.

[15] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, “Pscout: analyzing
the android permission specification,” in Proceedings of the ACM
Conference on Computer and Communications Security. ACM, 2012,
pp. 217–228.

[16] W. Xu, F. Zhang, and S. Zhu, “Permlyzer: Analyzing permission
usage in android applications,” in Proceedings of the 24th International
Symposium on Software Reliability Engineering (ISSRE). IEEE, 2013,
pp. 400–410.

[17] D. Barrera, H. G. Kayacik, P. C. van Oorschot, and A. Somayaji,
“A methodology for empirical analysis of permission-based security
models and its application to android,” in Proceedings of the 17th
ACM conference on Computer and Communications Security. ACM,
2010, pp. 73–84.

[18] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel,
and A. N. Sheth, “Taintdroid: An information-flow tracking system
for realtime privacy monitoring on smartphones,” in Proceedings of
the 9th USENIX Conference on Operating Systems Design and Imple-
mentation, ser. OSDI’10. Berkeley, CA, USA: USENIX Association,
2010, pp. 393–407.

[19] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A.-R. Sadeghi, and
B. Shastry, “Towards taming privilege-escalation attacks on android.”
in NDSS. The Internet Security, 2012.

[20] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, and A.-R. Sadeghi,
“Xmandroid: A new android evolution to mitigate privilege escalation
attacks,” Technical Report TR-2011-04, Technische Universität Darm-
stadt, 2011.

[21] M. Conti, V. T. N. Nguyen, and B. Crispo, “Crepe: Context-related
policy enforcement for android,” in Information Security. Springer,
2011, pp. 331–345.

[22] W. Enck, M. Ongtang, and P. McDaniel, “On lightweight mobile phone
application certification,” in Proceedings of the 16th ACM Conference
on Computer and Communications Security. ACM, 2009, pp. 235–
245.

[23] M. Ongtang, S. McLaughlin, W. Enck, and P. McDaniel, “Semantically
rich application-centric security in android,” Security and Communica-
tion Networks, vol. 5, no. 6, pp. 658–673, 2012.

[24] G. Russello, M. Conti, B. Crispo, and E. Fernandes, “Moses:
supporting operation modes on smartphones,” in Proceedings of the
17th ACM Symposium on Access Control Models and Technologies.
ACM, 2012, pp. 3–12.

[25] M. Backes, S. Gerling, C. Hammer, M. Maffei, and P. von Styp-
Rekowsky, “Appguard–enforcing user requirements on android apps,”
in Tools and Algorithms for the Construction and Analysis of Systems.
Springer, 2013, pp. 543–548.

[26] B. Davis and H. Chen, “Retroskeleton: retrofitting android apps,” in
Proceedings of the 11th Annual International Conference on Mobile
Systems, Applications, and Services. ACM, 2013, pp. 181–192.

[27] B. Davis, B. Sanders, A. Khodaverdian, and H. Chen, “I-arm-droid:
A rewriting framework for in-app reference monitors for android
applications,” Mobile Security Technologies, vol. 2012, 2012.

[28] J. Jeon, K. K. Micinski, J. A. Vaughan, A. Fogel, N. Reddy, J. S.
Foster, and T. Millstein, “Dr. android and mr. hide: fine-grained
permissions in android applications,” in Proceedings of the 2nd
ACM Workshop on Security and Privacy in Smartphones and Mobile
Devices. ACM, 2012, pp. 3–14.

[29] S. Rasthofer, S. Arzt, E. Lovat, and E. Bodden, “Droidforce: Enforcing
complex, data-centric, system-wide policies in android,” in 9th Inter-
national Conference on Availability, Reliability and Security (ARES).
IEEE, 2014, pp. 40–49.

[30] R. Xu, H. Saı̈di, and R. Anderson, “Aurasium: Practical policy
enforcement for android applications.” in Proceedings of the USENIX
Security Symposium, 2012, pp. 539–552.

[31] M. Nauman, S. Khan, and X. Zhang, “Apex: extending android per-
mission model and enforcement with user-defined runtime constraints,”
in Proceedings of the 5th ACM Symposium on Information, Computer
and Communications Security. ACM, 2010, pp. 328–332.

[32] S. Smalley and R. Craig, “Security enhanced (se) android: Bringing
flexible mac to android,” in Proceedings of the 20th Annual Network
and Distributed System Security (NDSS) Symposium, vol. 310, 2013,
pp. 20–38.

[33] M. Lange, S. Liebergeld, A. Lackorzynski, A. Warg, and M. Peter,
“L4android: a generic operating system framework for secure smart-
phones,” in Proceedings of the 1st ACM Workshop on Security and
Privacy in Smartphones and Mobile Devices. ACM, 2011, pp. 39–50.

[34] J. Andrus, C. Dall, A. V. Hof, O. Laadan, and J. Nieh, “Cells: a virtual
mobile smartphone architecture,” in Proceedings of the Twenty-Third
ACM Symposium on Operating Systems Principles. ACM, 2011, pp.
173–187.

[35] C. Wu, Y. Zhou, K. Patel, Z. Liang, and X. Jiang, “Airbag: Boosting
smartphone resistance to malware infection,” in Proceedings of the
Network and Distributed System Security Symposium (NDSS). Internet
Security, 2014.

[36] M. Backes, S. Bugiel, C. Hammer, O. Schranz, and P. von Styp-
Rekowsky, “Boxify: Full-fledged app sandboxing for stock android,”
in Proceedings of the 24th USENIX Security Symposium. USENIX,
2015, pp. 691–706.

[37] A. Bianchi, Y. Fratantonio, C. Kruegel, and G. Vigna, “Njas: Sand-
boxing unmodified applications in non-rooted devices running stock
android,” in Proceedings of the 5th Annual ACM CCS Workshop on
Security and Privacy in Smartphones and Mobile Devices. ACM,
2015, pp. 27–38.

[38] X. Wang, K. Sun, Y. Wang, and J. Jing, “Deepdroid: Dynamically
enforcing enterprise policy on android devices,” in Proceedings of
the 22nd Annual Network and Distributed System Security Symposium
(NDSS’15), 2015.

[39] S. Bugiel, L. Davi, A. Dmitrienko, S. Heuser, A.-R. Sadeghi, and
B. Shastry, “Practical and lightweight domain isolation on android,”
in Proceedings of the 1st ACM Workshop on Security and Privacy in
Smartphones and Mobile Devices. ACM, 2011, pp. 51–62.

