
Securing Web Applications with Secure Coding Practices and Integrity Verification

Arafa Anis∗, Mohammad Zulkernine∗, Shahrear Iqbal∗, Clifford Liem†, Catherine Chambers†
∗Queen’s University, Kingston, Ontario, Canada

{iqbal,mzulker,anis}@cs.queensu.ca
†Irdeto, Ottawa, Ontario, Canada

{clifford.liem,catherine.chambers}@irdeto.com

Abstract—The concept of security in web applications is not
new. However, it is often ignored in the development stages of
the applications. Being multitiered and spread across different
domains, it is challenging to come up with a security solution
that works for all web applications. Moreover, developers are
more inclined to implement features and often do not prac-
tice secure coding. Therefore, countless web applications are
launched with security vulnerabilities like cross-site scripting,
injection attacks and resource alterations. In addition, code
tampering on the client side is a serious security risk for
web applications. In our opinion, integrating security features
should be a part of the development process. Without practicing
secure coding and having an integrity verification system in
place, it is difficult to defend security attacks. In this paper,
we present a system that helps developers to implement security
measures on the client side code based on the best practices
of secure coding. We also develop an integrity verification
module to prevent code tampering attacks on the client side.
The proposed approach can be integrated with both new and
existing web applications. We implement our approach for a
number of JavaScript-based applications and the results show
that our approach increased the security of the applications
and prevented any modifications performed on the client side.

I. INTRODUCTION

Web-based applications are being rapidly deployed
through the Internet as these applications are easy to develop
and deploy. However, information security and privacy is-
sues are not always taken into consideration properly. Hence,
they fall victim to cyber-attacks and can be prone to giving
out valuable information. The most vulnerable among these
are e-businesses and applications that deal with a user’s
personal information such as credit card information and
insurance records. According to Verizon’s 2016 data breach
report [1], 89 percent of web attacks had a financial or
espionage motive. Attacks can be conducted and sensitive
information may be gathered while leaving little or no
forensic evidence [2]. Often, security becomes a priority
only after a security breach. Therefore, it is very important to
develop web applications that have proper security measures
in place and protect the applications that have already been
deployed.

Web applications can be attacked on both the client side
and the server side including any third parties that are
involved in the process. However, security is often enhanced

on the server side while keeping the client side open to
threats [3]. Client side data cannot be trusted and should
always be scrutinized before usage. Security measures such
as cryptographic algorithms can be put in place to fend off
attackers. However, they too can be altered by attackers at
runtime. Therefore, the code that is added to make the client
side secure requires security of its own.

Two industry-driven surveys that focus on web application
security, namely OWASP (Open Web Application Security
Project) and CWE (Common Weakness Enumeration), have
illustrated how the attackers focus has shifted from the
server-side to the client side [4], [5]. Among the vulnerabil-
ities mentioned in their most recent reports, SQL injection
and cross-site scripting (XSS) are prevalent in both the
reports. Another type of attack is resource alteration which
occurs when servers and Content Delivery Networks (CDNs)
fail to deliver scripts and stylesheets in their original state.
These resources get altered by the attackers.

A web application also needs to verify that the code
included for security purposes is not altered during runtime.
For this, the client side code needs to be checked for
integrity and verified against known good versions. However,
client side verification mechanisms can compromise the
responsiveness of the application [6] which is a challenge
when designing mechanisms for ensuring integrity.

In this paper, we introduce an approach to secure web
applications by providing guidelines to the developers to
prevent SQL injection, XSS, and resource alteration attacks.
For a list of secure coding methods, we have consulted
OWASP and recent literature for recommendations [7]. From
these recommendations, we derive security policies that can
help secure a web application against above mentioned
attacks. Furthermore, to verify the integrity of the code
during runtime, we propose an integrity verification module.

The integrity verification module (IVM) is designed to
prevent client side code modifications. It executes on sepa-
rate threads in the background to maintain the responsive-
ness of the web application.

In particular, the contributions of this work are as follows:
• We develop security policies for web applications to

prevent prevalent attacks. We show that how secure
coding practices, when implemented properly, can pro-
vide security to web applications.

Integrate
security policies

Add integrity
verification

module

Web
application

Modified
secure web
application

Figure 1. High-level work flow for securing web applications.

• We develop an integrity verification module that pre-
vents code tampering at runtime. In this module,
JavaScript code on the client side is protected from
alteration. This is also intertwined with the security
code on the client so that if it is blocked or taken off by
attackers, the application will lose some of its function-
ality. Client side code is signed and checked at regular
intervals during runtime to validate its authenticity.

The remainder of the paper is structured as follows. We
discuss the related work in Section II. Section III describes
our approach and Section IV presents the evaluation results.
We conclude the paper in Section V.

II. RELATED WORK

Recent works on web application security involve end-
to-end security schemes and protection of the applications
through code instrumentation [8]. Web application scripts are
among the most vulnerable parts of a web application. Web
application defenses, however, do not always flow from the
client end since it is vulnerable by itself. However, purely
client side defense mechanisms do exist that enforce policies
without the help of the server [9]. Detection of malicious
code can be successfully carried out on this side [10].

For preventing SQL injections through user inputs, re-
searchers have proposed many defense mechanisms and
frameworks. Black-box testing and code checking have been
the front runners when it comes to detecting SQL injec-
tion attacks. Although black-box testing does not require
knowledge of the code base, it does not assure completeness
while checking for vulnerabilities [11]. Combined static and
dynamic analysis as seen in AMNESIA [12] employs model-
based checking to detect and prevent SQL injection. This
technique uses static analysis to build models of different
types of SQL queries. During runtime, AMNESIA intercepts
all queries to the database and verifies them against the stat-
ically built models. If the queries do not pass the verification
test, they are prevented from executing. The limitation with
this technique is that if the primary models are not accurate,
the success rate for this approach drops significantly. If code
obfuscation is used while sending the queries, the models
will not be able to identify actual attacks during runtime.

In the context of cross-site scripting attacks, the defense
mechanism depends on the kind of attack. For stored and
reflected XSS attacks, the prevention methods are usually
deployed on the server side. Interpretor-based approaches

for PHP are presented in [13]. With boundary injection
and policy generation, Shahriar et al. [14] presented an
automated framework to detect server side XSS attacks.
This framework comes with a tool to automatically insert
boundaries and generate policies for JavaServer Page (JSP)
programs. However, this is still a server side mechanism
and lacks the functions required to prevent client side XSS
attacks.

Code tampering on the client side has been addressed
through information flow analysis [15] in a recent research
work. This is mostly due to the fact that it is easier to secure
the server side and provide security to the client through
extensions of the server side methods. JavaScript integrity
has been overlooked for document structure integrity and
integrity of content caching [16]. These research do not
protect the client code from alteration during runtime. This
has been a long running problem in web applications. Wan
et al. [17] presented a solution for verifying the integrity
of application cache in android runtime to defend against
attacks. However, similar solutions for JavaScript runtime
are not available.

The security mechanisms discussed here are built as
separate systems that can be used on web applications. It is
not possible to implement parts of the solutions and achieve
a secure web application. Web application developers are not
benefited by these security mechanisms if they do not adopt
the entire system as a whole and implement it. Developers
would need to integrate entire solutions to their native code
for security purposes. This integration might even lead to
bigger security holes. In contrast, Our approach relies on
developers reevaluating and changing their coding practices
to ensure more security for their web applications in terms
of SQL injection, XSS attacks and resource alteration. In
addition, the integrity verification module ensures that the
integrity of the client side protection code.

III. SECURE CODING PRACTICES AND INTEGRITY
VERIFICATION

The proposed approach for integrating security into web
applications has two components. First, we have the security
policies and then the integrity verification module. Figure
1 illustrates a high-level work flow of our approach. At
first, guidelines are provided for integrating security policies.
After that to ensure that the client side code cannot be
altered, the integrity verification module is added.

A. Security Policies

The security policies deal with how data on web ap-
plications are used and how vulnerable the applications
are to an attacker. Here, we assume that the client or the
user is benign and the attacks occur through a third party
attacker. The policies proposed are input sanitization, output
validation, principle of least privilege, subresource integrity,
and content security. Table I presents how each of the
policies are mapped to specific attacks. Below, we describe
these policies.

Table I
TYPES OF ATTACKS TO POLICY MAPPING

Policy Attack type
Input Sanitization SQL injection, XSS attack
Output Validation SQL injection, XSS attack

Principle of Least Privilege SQL injection, XSS attack, Resource
Alteration

Subresource Integrity Resource Alteration
Content Security XSS attack

Input Sanitization. One of the main problems apparent in
web applications is insufficient input sanitization. When it
comes to secure coding practices, this is the top priority.
As soon as any input is taken by the web application, it
has to be checked for syntactic and semantic relevance.
There are default filters in some languages that are in use
in web applications. Frameworks such as Apache Commons
Validator [18] and Django Validator [19] are used for data
type validation. However, we do keep in mind that filters can
be bypassed by intruders and there are other security policies
in place if that happens. Our guideline ensures that the length
and the fields are checked for each input. We aim to deny all
attempts to put untrusted data in HTML documents unless it
is required by the application. We start with escaping HTML
before inserting it into the element content and HTML
common attributes. Dynamically generated JavaScript code
is treated as data value as the code cannot be trusted.

We aim to validate all incoming responses from the web
application while verifying that they conform to certain rules
and constraints. We use validate.js library [20] to emulate
primary validations on web applications. In addition to the
validators provided, we add more for the inputs required
for each web application. The most crucial ones are for
username, email, password, birthday, country, zip code, and
any numerical inputs.

Our proposed approach uses a whitelist system to protect
web applications against injection attacks. This is different
for each application according to the genre. We define the
whitelist and characteristics for each input depending on
expected entries. The inputs only go through the application
if they match. The list can be hosted on the client or
the server and checked for every input. The minimum and
maximum values for numerical parameters are reinforced.

There is also a check for minimum and maximum length of
Strings.

Most importantly, we recommend using parametrized
queries when querying a database. Accordingly, each query
is prepared as a SQL statement and the parameters are
passed to it later. This prevents attackers from altering a
query to inject code and cause an attack.
Output Validation. This policy makes use of escaping
techniques with the knowledge of what is expected as an
output. This works in accordance to the needs of the web
application and might not be needed for all pages or parts.
The use of the output is taken into account when integrating
and enforcing this policy. The length of every output is
checked before it is presented. An output that is longer
than expected can be used to cause harm to the application.
Moreover, all outputs to the client are checked for script
tags and only scripts that are from expected sources are sent
through. Quotes (both double and single) are screened and
formatted before it is sent to the client. All kinds of brackets
are also investigated during output validation. Every starting
bracket is checked for an ending bracket in the same context.
In our approach, we want to make sure that no input is
echoed back in the HTML context without proper filtration.
Principle of Least Privilege. The principle of least privilege
is a policy derived from OWASP security by design prin-
ciples [21]. The goal of this principle is to restrict access,
rights and privileges to the application in order to secure
it. It only allows individual users the level of access they
require to perform their work efficiently and not more. In
essence, our approach initially blocks off features that are
not required for a web application and its users. This also
leads to the protection from SQL injection attacks [22].
The functionalities of this policy include turning off plugin
support if the page does not require using plugins, preventing
access to window.open depending on the application, and
deny root access to databases whenever possible. We highly
encourage that privileges are set to roles instead of users.
This makes it easier to keep track of users and alleviates
the risk of users having privileges they do not need from
past roles. In this case, they can be assigned to a new role
without having to edit their individual privileges.
Subresource Integrity. For a web application to be func-
tional with options for clients, it has to serve content from
several third party resources. Often, these contents are hosted
on third party servers and CDNs and the developers have
no control over the servers. If the servers are attacked and
the content are tampered with, the web applications can
inadvertently serve malware to their clients. This cannot
be prevented by secure downloading as the content to be
downloaded is now corrupt. Moreover, the most popular
prevention rule for cross-site scripting (XSS) attacks is
preventing untrusted data to be placed in the HTML docu-
ment [23]. This rule can help eliminate most XSS attacks.
However, scripts that are executed on the application need

to be checked for integrity to conform to this rule. This
is where subresource integrity (SRI) comes into place. By
practicing secure coding in the development stage of a web
application, we can ensure that unwanted malware are not
served to web applications through servers or CDNs. It is
a process through which a user agent can confirm that the
downloaded content is indeed what was requested for. To
enforce this security policy, every time a third party resource
is added to the web application, a String is added to the
HTML element to confirm its integrity. This String contains
the sha256 cryptographic hash value of the script that is to
be requested. Figure 2 presents a script tag with the SRI
attribute.

integrity— sha256-161 ec3c2b4036a4a54aa85de18e8c3fd9be5e6e5e6647a742771Bd2c95d78b7
crossongm= "anonymous'S escript>

<script src=“https://code.securesource.com/hmac243.js”
Integrity=“sha256-
161ec3c2b4036a4a54aa85de18e8c3fd9be5e6e5e6647a74
2771Bd2c95d78b7”
crossorigin=“anonymous”> </script>

Figure 2. Subresource integrity confirmed with HTML attribute.

The browser plays an important part in enforcing this
policy as it compares the cryptographic String that is in
the HTML document header with the hash value of the
document. It will only execute the files if the two hash values
match. This policy can be integrated during the development
stage or added afterwards as long as the developer knows
what the third party resource is delivering. This protocol
needs the developer to add the hash values of third party
scripts in the HTML header before launching the web
application.
Content Security. Since a web application might have
content from different sources, there needs to be a list to
check against content sources before using them. Content
Security Policy (CSP) provides this with the means of a
whitelist. It is a HTTP header that is recommended by the
Web Application Security Working Group [24]. With the
help of this header, we create a whitelist which the browser
can use to choose whether to allow a script to execute or a
content to be served. This can be done through the practice
of secure coding by developers. This is especially important
when it comes to cross-site scripting attacks. Here, even if
the attack has been executed and a script injected, CSP will
not find a match of the script with the ones on the whitelist
and therefore it will not be allowed to execute.

This policy allows developers to declare sources to be
verified. It can also be customized to allow and prevent
certain behaviours. Moreover, the directives in the policy
are used for micromanaging certain behaviours. Some of
the directives in CSP are pre-request check, post-request
check and inline check. These directives are used to design
customized content security policies.

All of these policies, when enforced and working in
sync, increase the security against cross-site scripting, SQL
injection and resource alteration attacks.

B. Integrity Verification Module

The integrity verification module or IVM is used to ensure
that the security code on the client side is not tampered
with during runtime. The module is designed based on the
challenge-response protocol as depicted in Figure 3. It is
designed to secure the verification module and to maintain
obfuscation during runtime. The three major elements of
the figure are the page running the main UI thread, the web
worker with the hashing function and multiple web workers
denoted with the number (#) sign.

In this module, the key for the hashing function is sent as
a challenge in each iteration. The server has knowledge of
the challenge and hash value of the known good code for
each script. The sequential process is described below.

• The process starts with a web worker with the HMAC
SHA256 hash function sending a random 4 bit chal-
lenge to the main page (1).

• The main page then proceeds to obfuscate the challenge
and sends it to the web workers with the security code
(2).

• When the web workers receive the challenge, they
retrieve their function bodies as a String according
to two predetermined bits in the challenge. The bits
dominate how the functions are arranged within the
String. The four combinations from the two bits (00,
01, 10, 11) change the order of the retrieved Strings.
According to the last two bits, the Strings retrieved can
be ordered in different ways. They can be placed in an
alphabetical order- ascending or descending. They can
also be placed on the String according to their length-
short to long functions or long to short functions.

• For further obfuscation, the function Strings are then
XOR-ed with a rolling XOR key and sent to the main
page as a response (3, Response i 1).

• The main page then retrieves its own function bodies
as a String according to the two bits in the challenge
and applies the rolling XOR to the String.

• The main page then sends the Strings from the workers
and itself to the web worker containing the hashing
function (4, Response 1||Response i 1).

• The web worker with the hashing function (HMAC)
receives the message with the masked Strings. The web
worker uses the embedded function previously men-
tioned to retrieve another String. This String contains
the web worker’s hashing function.

• The web worker with the HMAC function then per-
forms the hashing computations on all the Strings and
saves the hash value with the two bits of the challenge
that was sent.

Figure 3. Challenge-response protocol in the integrity verification module.

• Consequently, another challenge is sent to the main
page by the web worker with the hashing function and
the above process keeps repeating in the background
(5).

If the web worker with the hashing function receives
Strings that are masked with the same two bits as previous
challenges, the new hash value is compared to the saved
hash value before getting saved. A dissimilarity will lead
to an error output. If the Strings are masked with different
bits, then the web worker saves it in a similar procedure as
described before.

When the application requires an integrity verification of
the client side, the following steps take place.

• The main page requests the worker with the hashing
function for a verification check along with a random
two bit number which indicates the hash value to be
chosen.

• The web worker with the HMAC function and hash
values proceeds to send in the pre-computed result
without any delay, in essence, speeding up the whole
verification process.

• After the main page gets the hash result, it sends the
result to the server.

• The server computes the same steps as the client,
therefore, the server will have the same result.

• The server can check with its own version of hash
results and report on the application’s integrity.

The offline computation speeds up the whole process even
with the many challenges that are sent and computed for. The
web application does not have to wait for user interactions

to run the verification check. This design is able to execute
the checks on a frequent basis with minimum interaction
with the main UI. Since the scripts are imported and hashed
on different web workers, the main thread is not halted in
the verification cycles. This ensures that the responsiveness
of the application is not compromised.

Moreover, a different random challenge is sent in every
iteration which protects it against replay attacks. Another
feature of this module is that the arrangement of the Strings
from each script depends on two bits of a unique challenge
which is difficult for an attacker to locate without prior
knowledge of the system. Furthermore, all the messages are
masked before sending and unmasked when needed. When
the application requires an integrity check, the required
result can be sent to the server without any delay as the
process computes in the background repeatedly. To ensure
that the added JavaScript files do not slow down the down-
load times, all the scripts are minified before integration.
The minification process removes all unnecessary code and
reduces the size of the JavaScript file. This helps to reduce
bandwidth consumption of the web application and the
reduced file sizes improve execution time.

This integrity verification module ensures that the client
side code cannot be altered when the web application is live.
The whole check is done during runtime and the amount of
randomness makes it unpredictable.

IV. EVALUATION

In this section, we present our experimental setup and
evaluation results. To emulate attacks, we used several
open source tools. These tools are chosen based on their

ability to take advantage of vulnerabilities that might be
present in the web applications and mimic attacks such
as cross-site scripting, SQL injection and code tampering.
In Table II, we present the tools and Table III presents
22 web applications that are modified using our approach.
The 22 open source web applications vary from each other
both in their functionalities and sizes. Since our approach
encapsulates the JavaScript files during runtime, the average
size of JavaScript files are presented here.

Table II
EVALUATION TOOLS

Tool Intended Use

Vega [25] SQL injection, header injection, cross-site
scripting

Zed Attack Proxy [26] Automated scanner, passive scanner, forced
browsing, fuzzer

Skipfish [27] Security threats, vulnerability report
JBroFuzz [28] Automated fuzzing

Table III
WEB APPLICATIONS USED IN THE EVALUATION

Type of web application Average JavaScript file
size (in KB)

Online reservation platform 348
Blogging application 600
Deployment tool 654
Podcast system 802
Status page system 532
Inter-network communication appli-
cation 670

Note-taking application 409
E-commerce platform for online mer-
chants 670

Greeting-sending application 349
Watsapp clone application 321
Pokemon go clone application 1270
E-learning application 491
Restaurant management system 1123
Donation application 359
Online tutorial application 352
Cross-platform chat application 432
Office attendance application 296
News outlet application 236
Data analysis application 243
Personal dash board 414
Event polling application 367
Meeting scheduling application 398

A. Experimental Environment

The machine used for this experiment has an intel core i7
processor and 4GB of RAM. To serve the web applications,
we use the Apache Tomcat server (version 8.5.23) [29].

B. Experiments and Results

The experiments to show the attack prevention rate of our
approach is conducted through the vulnerability scanner and
attack tools. For attack purposes, we choose attack inputs
from two widely used sources to detect XSS and SQL

injections which are XSS Cheat Sheet and SQL Injection
Cheat Sheet [30], [31]. For resource alterations, we alter the
scripts the web application is expecting both before and after
the page is loaded. For each web application, the attacks are
performed one hundred times, each time with a unique input.
The number of times the web applications can prevent the
attacks (out of one hundred) is calculated. The average of
the number of preventions across all the web applications is
presented as the prevention rate.

1) Protection Evaluation with Security Policies: Figure 4
summarizes our experiment results. For each type of attack,
we calculate how many of them are prevented. As discussed
above, the attacks were performed one hundred times with
unique parameters. From Figure 4, we can see that the web
applications have massively succumbed to attacks before
we integrate our approach. The prevention rate is below 55
percent for all the attacks. For evaluation purposes, resource
alteration is done by changing the scripts and files the web
application is fetching. The prevention rate is the lowest for
this kind of attack. This is mostly due to the fact that the
web applications in question did not have a mechanism to
check for altered scripts. Most web applications still let the
scripts execute after alteration.

0

10

20

30

40

50

60

70

80

90

Sql Injection Cross Site Scripting Resource Alteration

Before integration After integration

Attack Types

P
re
ve
n
ti
o
n
 R
at
e

Figure 4. Attack prevention rate before and after the integration of our
approach.

After the integration of our approach, the prevention rate
of the web applications against the attacks increases. The
prevention rate for resource alteration attacks shows the most
positive change. This is due to the subresource integrity
policy ensuring that the external scripts cannot be altered.
The resource alteration attacks are mostly successful when
the security policies are not able to load before the attacks
are performed. This happens when the attacks are initiated
before the page with the security policies has loaded.

2) Evaluation of the Integrity Verification Module: Figure
5 presents the results of using multiple web workers in the
web applications. We start with just one web worker and
increase it to 25. All the workers communicate with the main
page and have access to the cryptographic HMAC SHA256
signing code. Someone might assume that having more
workers would always speed up the process of verification.

Figure 5. Time required for integrity verification (IV) with varying number
of web workers.

However, from the figure, we can see that it is not the case.
The fastest speed is at 16 web workers after which the times
start to show inconsistencies.

The initial experiment is done with the two components
in place but no web workers. From all the web applications
put through this experiment, we take the average time it
takes to do the integrity verification (IV). We find that on
average it takes 4.3 seconds. This is a long time for the main
UI to be waiting for results. This also sheds light on why
developers, for the most part, do not have separate integrity
checks in place. It slows down the user interface and for this
4.3 seconds, the user has to wait for a verification check
before they can proceed with the next steps of the web
application. As discussed in the introduction, this lag causes
users to switch to other web applications. However, it can be
seen from Figure 5 that integrating even one web worker to
the verification process significantly lowers the time needed.
Even with two web workers, time taken for the verification
process is 3.7 seconds which is a 16 percent decrease in time.
The speed increases gradually with the added web workers.
The highest average speed with the lowest number of web
workers is 0.04 seconds with 16 web workers.

Now that we know the optimum average number of web
workers that can be used to get the fastest results, we alter
the client side code during runtime to check how long it
takes for the IVM module to report an attack. For this
experiment, we use multiple files of average 350KB size
for checking the integrity. However, the time the attacks are
initiated differs from one round of attacks to another. This
is done because the first couple of iterations of the integrity
verification process need to happen before the hash value
is ready for the client side. If the server requires the hash
value for a challenge that has not been computed yet, the
client side will have to compute it before it can be sent.
After which, it can be compared and an error is reported if
any discrepancy exists. Here, we alter the client side code
starting at 2 seconds after the page has been loaded. Figure

6 shows that for this attack, it takes the IVM 4.5 seconds
to report the attack. The first time a web worker reports an
error is taken into account and recorded.

There are three things that need to happen in one cycle
of integrity verification. They are completing a challenge-
response cycle, storing the hash value in the hash table
and verifying the hash value against the known good value.
The time to perform integrity verification depends on all the
three. As the attacks occur later in time compared to when
the scripts are loaded, the error reports come in sooner. This
happens because the verification mechanism gets time to
perform several cycles before a check is required. Therefore,
the hash results are precomputed and sent in without delay
when there is an integrity verification request.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 5 10 15 20 25Ti
m
e	
IV
M
	ta
ke
s	t
o	
re
po
rt	
at
ta
ck
	(i
n	
se
cs
)

Time	attack	is	initiated	 (In	secs)

Figure 6. Time required for the IVM with varied attack initiation times.

Initially, when the attack happens at 2 seconds, it takes
the IVM 4.5 seconds to report it. However, when the code
alteration attack is initiated at 5, 10 or even 20 seconds after
the page load, we can see a steady decline in the report times.
The results show that the integrity verification module can
report the attacks faster with the increase in time after the
page load. Even though our approach takes more time to
report if the attack is initiated early on, the application is
still protected from being tampered with.

C. Discussion

The experimental results show that the proposed approach
for securing the web applications is promising. Table IV
shows the percentage increase in prevention rates of all the
individual attack scenarios. The average percentage increase
is around 32 percent from just integrating the security
policies. The integrity verification module makes sure that
all the client code is signed and checked during runtime.
If the client code is altered, this module lets the user
know immediately. The results also show how web workers
can help with the responsiveness while still verifying the
integrity of the client side code.

V. CONCLUSION

It is becoming extremely important to secure web appli-
cation client sides. To achieve this goal, we make use of

Table IV
INCREASE IN ATTACK PREVENTION RATE

Attacks Increase in prevention rate
SQL injection 24
Cross-site scripting 31
Resource alteration 43

secure coding practices to protect the application against
prevalent attacks using predetermined security policies. The
secondary goal of this work is to verify the integrity of
the client side code during runtime. To attain this goal, we
design and implement an integrity verification module that
checks code integrity during runtime. The security policies
work together to protect the web application against SQL
injection, cross-site scripting and resource alteration attacks.
The policies include input and output sanitization, principle
of least privilege, sub resource integrity and content security
policy. The integrity of the JavaScript files is checked by
the integrity verification module. The protection provided
by our approach shows an average of 33 percent increase
in attack prevention rates. Also, the integrity verification
module reports code tampering attacks as fast as around 2.5
seconds with proper multithreading.

ACKNOWLEDGMENT

This work is partially supported by Mitacs Canada and
Irdeto Canada.

REFERENCES

[1] “2016 DBIR: Understand Your Cybersecurity Threats.” [On-
line]. Available: http://www.verizonenterprise.com/verizon-
insights-lab/dbir/2016/

[2] J. B. D. Joshi, W. G. Aref, A. Ghafoor, and E. H. Spafford,
“Security Models for Web-based Applications,” Communica-
tions of the ACM, vol. 44, no. 2, pp. 38–44, Feb. 2001.

[3] P. De Ryck, L. Desmet, F. Piessens, and M. Johns, Primer
on Client-side Web Security. Springer, 2014.

[4] “Category:OWASP Top Ten Project - OWASP.” [On-
line]. Available: https://www.owasp.org/index.php/Category:
OWASP Top Ten Project#tab=OWASP Top 10 for 2010

[5] B. Martin, M. Brown, A. Paller, and D. Kirby, “CWE -
2011 CWE/SANS Top 25 Most Dangerous Software Errors.”
[Online]. Available: http://cwe.mitre.org/top25/

[6] R. C. Marchany and J. G. Tront, “E-commerce Security
Issues,” in Conference on System Sciences. IEEE, Jan. 2002,
pp. 2500–2508.

[7] “OWASP Secure Coding Practices Checklist - OWASP.” [On-
line]. Available: https://www.owasp.org/index.php/OWASP
Secure Coding Practices Checklist

[8] Y. Huang, S. Huang, T. Lin, and C. Tsai, “Web Application
Security Assessment by Fault Injection and Behavior Moni-
toring,” in Conference on World Wide Web. ACM, 2003, pp.
148–159.

[9] L. A. Meyerovich and B. Livshits, “ConScript: Specifying and
Enforcing Fine-Grained Security Policies for JavaScript in the
Browser,” in Symposium on Security and Privacy. IEEE,
May 2010, pp. 481–496.

[10] O. Hallaraker and G. Vigna, “Detecting Malicious JavaScript
Code in Mozilla,” in Conference on Engineering of Complex
Computer Systems. IEEE, Jun. 2005, pp. 85–94.

[11] J. Bau, E. Bursztein, D. Gupta, and J. Mitchell, “State of
the Art: Automated Black-Box Web Application Vulnerability
Testing,” in Symposium on Security and Privacy. IEEE, May
2010, pp. 332–345.

[12] W. G. J. Halfond and A. Orso, “Preventing SQL Injection
Attacks Using AMNESIA,” in Conference on Software Engi-
neering. ACM, 2006, pp. 795–798.

[13] A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley, and
D. Evans, “Automatically Hardening Web Applications Using
Precise Tainting,” in Conference on Security and Privacy in
the Age of Ubiquitous Computing. Springer, May 2005, pp.
295–307.

[14] H. Shahriar and M. Zulkernine, “S2xs2: A Server Side Ap-
proach to Automatically Detect XSS Attacks,” in Conference
on Dependable, Autonomic and Secure Computing. IEEE,
Dec. 2011, pp. 7–14.

[15] T. Jaeger, R. Sailer, and U. Shankar, “PRIMA: Policy-reduced
Integrity Measurement Architecture,” in Symposium on Ac-
cess Control Models and Technologies. ACM, 2006, pp.
19–28.

[16] Y. Nadji, P. Saxena, and D. Song, “Document Structure
Integrity: A Robust Basis for Cross-site Scripting Defense.”
in Symposium on Network and Distributed System Security
(NDSS), Jan. 2009, pp. 1–20.

[17] J. Wan, M. Zulkernine, P. Eisen, and C. Liem, “Defending Ap-
plication Cache Integrity of Android Runtime,” in Conference
on Information Security Practice and Experience. Lecture
Notes in Computer Science, Springer, Dec. 2017, pp. 727–
746.

[18] “Validator Commons Validator.” [Online]. Available:
https://commons.apache.org/proper/commons-validator/

[19] “Validators - Django documentation.” [Online]. Available:
https://docs.djangoproject.com/en/2.0/ref/validators/

[20] “Validate.js.” [Online]. Available: https://validatejs.org/
[21] “Security by Design Principles - OWASP.” [Online]. Avail-

able: https://www.owasp.org/index.php/Security by Design
Principles#Principle of Least privilege

[22] D. Wichers, J. Manica, M. Seil, and D. Mishra, “SQL
Injection Prevention Cheat Sheet - OWASP.” [Online].
Available: https://www.owasp.org/index.php/SQL Injection
Prevention Cheat Sheet

[23] S. Gupta and B. B. Gupta, “Cross-Site Scripting (XSS)
Attacks and Defense Mechanisms: Classification and State-
Of-The-Art,” International Journal of System Assurance En-
gineering and Management, vol. 8, no. 1, pp. 512–530, Jan.
2017.

[24] “Content Security Policy CSP Reference & Examples.”
[Online]. Available: https://content-security-policy.com/

[25] “Vega.” [Online]. Available: https://tools.kali.org/web-
applications/vega

[26] “OWASP Zed Attack Proxy Project - OWASP.” [Online].
Available: https://www.owasp.org/index.php/OWASP Zed
Attack Proxy Project

[27] “Skipfish.” [Online]. Available: https://tools.kali.org/web-
applications/skipfish

[28] “JBroFuzz - OWASP.” [Online]. Available: https://www.
owasp.org/index.php/JBroFuzz

[29] “Apache Tomcat.” [Online]. Available: http://tomcat.apache.
org/

[30] “XSS (Cross Site Scripting) Prevention Cheat Sheet -
OWASP.” [Online]. Available: https://www.owasp.org/index.
php/XSS (Cross Site Scripting) Prevention Cheat Sheet

[31] “SQL Injection Prevention Cheat Sheet - OWASP.” [Online].
Available: https://www.owasp.org/index.php/SQL Injection
Prevention Cheat Sheet

