
Solving the Multi-dimensional Multi-choice
Knapsack Problem with the help of Ants

Shahrear Iqbal, Md. Faizul Bari, and M. Sohel Rahman

A`EDA Group
Department of Computer Science and Engineering

Bangladesh University of Engineering and Technology
Dhaka-1000, Bangladesh

{shahreariqbal,faizulbari,msrahman}@cse.buet.ac.bd

Abstract. In this paper, we have proposed two novel algorithms based
on Ant Colony Optimization (ACO) for finding near-optimal solutions
for the Multi-dimensional Multi-choice Knapsack Problem (MMKP).
MMKP is a discrete optimization problem, which is a variant of the
classical 0-1 Knapsack Problem and is also an NP-hard problem. Due
to its high computational complexity, exact solutions of MMKP are
not suitable for most real-time decision-making applications e.g. QoS
and Admission Control for Adaptive Multimedia Systems, Service Level
Agreement (SLA) etc. Although ACO algorithms are known to have
scalability and slow convergence issues, here we have augmented the tra-
ditional ACO algorithm with a unique random local search, which not
only produces near-optimal solutions but also greatly enhances conver-
gence speed. A comparative analysis with other state-of-the-art heuristic
algorithms based on public MMKP dataset shows that, in all cases our
approaches outperform others. We have also shown that our algorithms
find near optimal (within 3% of the optimal value) solutions within mil-
liseconds, which makes our approach very attractive for large scale real
time systems.

1 Introduction

The classical 0–1 Knapsack Problem (KP) is to pick up items for a knapsack
to maximize the total profit, satisfying the constraint that, the total resource
required does not exceed the resource constraint R of the knapsack. This problem
and its variants are used in many resource management applications such as
cargo loading, industrial production, menu planning, and resource allocation in
multimedia servers [1]. The Multidimensional Multiple-choice Knapsack Problem
(MMKP) is a variant of the classical 0–1 KP. Here we have n groups of items.
Group i has `i items. Each item of the group has a particular value and it
requires m resources. The objective of the MMKP is to pick exactly one item
from each group for maximum total value of the collected items, subject to
m resource constraints of the knapsack. In mathematical notation, let vij and
−→rij = (rij1, rij2, . . . , rijm) be the value (profit) and required resource vector



of the object oij , i.e., j-th item of the i-th group. Also assume that
−→
R =

(R1, R2, . . . , Rm) be the resource bound of the knapsack. Now, the problem
is to

maximize

n∑
i = 1

`i∑
j = 1

xijvij (objective function),

subject to

n∑
i = 1

`i∑
j = 1

xijrijk ≤ Rk (resource constraints)

where xij ∈ {0, 1} are the picking variables, and for all 1 ≤ i ≤ n,
∑`i
j=1 xij =

1.

Fig. 1. Multidimensional Multiple-choice Knapsack Problem (figure borrowed
from [2]).

Fig 1 illustrates an MMKP. We have to pick exactly one item from each
group. Each item has two resources, r1 and r2. Clearly we must satisfy

∑
(r1

of picked items) ≤ 17 and
∑

(r2 of picked items) ≤ 15 and maximize the total
value of the picked items. Notably, it may happen that no set of items satisfying
the resource constraints exists implying that no solution will be found.

In this paper, we have described two new algorithms for solving MMKPs.
These algorithms are based on Ant Colony Optimization (ACO), which is a
recently developed, population-based stochastic meta-heuristic [3, 4]. ACO has
been successfully applied to solve several NP-hard combinatorial optimization
problems [5, 6], such as traveling salesman problem [7, 4], vehicle routing prob-
lem [8], and quadratic assignment problem [9, 10].

This meta-heuristic belongs to the class of problem-solving strategies derived
from nature. The ACO algorithm is basically a multi-agent system where low
level interactions among the agents (i.e., artificial ants) result in a complex be-
havior of the whole ant colony. The basic idea of ACO is to model the problem



under consideration as a searching problem, where a minimum cost path in a
graph is searched; the artificial ants are employed to search for good paths. The
pheromone trails are a kind of distributed information which is modified by the
ants to reflect their experience accumulated during the problem solving. This
substance influences the choices they make: the larger the amount of pheromone
is on a particular path, the larger is the probability that an ant would select the
path. Additionally these pheromone trails progressively decrease by evaporation.
Intuitively, this indirect stigmergetic communication mean aims at giving infor-
mation about the quality of path components in order to attract ants, in the
following iterations, towards the corresponding areas of the search space.

MMKP has received significant amount of attention in the literature mostly
motivated by capital budgeting, multimedia applications etc. There exist a num-
ber of heuristics in the literature for solving MMKP. Khan [1] proposed an al-
gorithm named HEU, using the idea of aggregate resource consumption. In [11],
a modified version of HEU named M-HEU was presented, which provides so-
lutions with total value on average equal to 96% of the optimum. In [2] the
authors presented a convex hull based heuristic called C-HEU, which is very
fast and achieves optimality between 88% and 98%. Hifi et al. [12] proposed a
guided local search-based heuristic and later improved upon it to achieve a “re-
active” local search-based (RLS) algorithm [13]. Hernndez and Dimopoulos [14]
also proposed a new heuristic for MMKP.

For solving MMKP with ACO, the most important design choice lies in de-
ciding which component of the problem should be regarded as the pheromone
depositing component. Here we have laid pheromone trails on each object se-
lected in a solution. Essentially, the idea is to increase the desirability of each
object selected in a feasible solution: during the constructing of a new solution,
these objects will be more likely to be selected. The contributions of this paper
are as follows.

We present two novel ACO based algorithms for solving MMKP. Both of
these algorithms produce comparable results with the current state-of-the-art
heuristic algorithms. To the best of our knowledge, this work is the first attempt
to solve MMKP using ACO. An interesting aspect of our algorithm is the in-
troduction of a novel and unique random local search algorithm for improving
the solutions generated by the ant colony. This process, coupled with the nat-
ural behavior of the artificial ants produces near-optimal solutions and greatly
enhances convergence speed of the ant colony.

The rest of the paper is organized as follows. Section 2 gives a brief description
of ACO algorithms for solving the multi-dimensional knapsack problem (MKP),
a related variant of KP. We present our main contribution in Section 3, where we
describe our algorithms for solving MMKPs. Section 4 presents the experimental
results along with an insightful discussion on the experimental results. Finally
we briefly conclude in Section 5.



2 ACO and Multi-dimensional KP

As has already been mentioned we did not find any ACO based algorithm to
solve MMKP in the literature. However there exist a number of ACO based
solution for a more restricted variant of KP, namely MKP [15–17]. In MKP
resources have multiple dimensions as in MMKP; however there is no concept
of group in MKP. As a result, MKP can be thought of as a restricted version of
MMKP, which has all objects in a single group. The algorithms of [15–17] differ in
deciding which component of the problem should be regarded as the pheromone
depositing component and in the mechanisms of pheromone updating:

1. Pheromone Trails on Each Object: The first way is to lay pheromone
trails on each object belonging to the current solution set [15]: the amount
of pheromone represents the preference of the object.

2. Pheromone Trails on Each Pair: In this case, pheromone trails are laid
on each pair (oi, oj) of successively selected objects of the solution set [16]:
the idea is to increase the desirability of choosing object oj when the last
selected object is oi.

3. Pheromone Trails on All Pair: The third one is to lay pheromone trails
on all pairs of different objects of the solution set [17]. Here, the idea is to
increase the desirability of choosing simultaneously two objects of S.

4. Pheromone Diffusion Model: The forth approach follows the same princi-
ple as the first one. Additionally it uses a pheromone diffusion scheme where
pheromone trails are laid on objects that tend to occur together in previous
solutions [18].

These approaches also differ in the way local heuristic information is defined.
We are particularly interested in the dynamic local heuristic information used
by [17, 15, 18] as defined below. Let Sk be the set of the selected objects at the
k-th Iteration. For each candidate object j, the heuristic information ηSk

(j) is
given as follows:

ηSk
(j) =

vj∑m
i = 1 rij/dSk

(i)
(1)

where,

dSk
(i) = Ri −

∑
t ∈ Sk

rit (2)

Since Sk will be changed from step to step, the heuristic information is dy-
namic. we will be using a variation of above heuristic.



3 Description of the proposed algorithm

We have proposed two variation of the ACO algorithm for solving MMKPs
namely AntMMKP-Random and AntMMKP-TopDb. Both of the algo-
rithm select groups randomly but the latter maintains a list of top k best so-
lutions in order to direct the ants to a better area of the search space. They
particularly follow the MIN-MAX Ant System [19], where explicit lower and
upper bounds on pheromone values are imposed i.e. τmin < τ < τmax, and all
pheromone trails are initialized to τmax. Below we describe these two algorithms
in greater details.

3.1 Variation 1: AntMMKP-Random

This algorithm is described in Algorithm 1. At each cycle of this algorithm, k
ants are used to build individual solutions. Each ant constructs a solution in
a step by step manner. At first a group from the set of candidate groups is
selected at random. All objects that violate resource constraints, are removed
from this group. Then, the object with the highest probability (according to
equation 5 below) is added to the solution. The probability of an object being
selected depends on the amount of pheromone deposited on the object so far
and its local heuristic value. The candidategroups data structure maintains a
list of feasible candidate groups which can be considered next. After each ant
has constructed a solution, the best solution of that iteration is identified and
a random local search procedure and a random item swap procedure is applied
to improve it. Then pheromone trail is updated according to the best solution.
The algorithm stops either when an ant has found an optimal solution (when
the optimal bound is known), or when a maximum number of cycles has been
performed.

Pheromone trails To solve MMKPs with ACO, the key point is to decide
which components of the constructed solutions should be rewarded, and how to
exploit these rewards when constructing new solutions. A solution of a MMKP
is a set of selected objects S = {oij |xoij = 1} (i.e., an object oij is selected if
the corresponding decision variable xij has been set to 1). Given a constructed
solution S = {oi1j1 , . . . , oinjn}, pheromone trails are laid on each objects selected
in S. So pheromone trail τij will be associated with object oij .

Pheromone updating Once each ant has constructed a solution, pheromone
trails laying on the solution objects are updated according to the ACO meta-
heuristic. First, all amounts are decreased in order to simulate evaporation. This
is done by multiplying the quantity of pheromone laying on each object by a
pheromone persistence rate (1− ρ) such that 0 ≤ ρ ≤ 1.

Then, pheromone is increased for all the objects in the best solution of the
iteration. More precisely, let Siterbest be the best solution constructed during
the current cycle. Then the quantity of pheromone increased for each object



Algorithm 1 Algorithm AntMMKP-Random
Initialize pheromone trails to τmax

repeat
Solution Sglobalbest ⇐ ∅
for each ant k in 1 . . . nants do

Solution Siterbest ⇐ ∅
candidategroups ⇐ all the groups
while candidategroups 6= ∅ do
Cg ⇐ Randomly select a group from candidategroups
Candidates ⇐ {oi ∈ objects in Cg that do not violate resource constraints}
update local heuristic values
Choose an object oi ∈ Candidates with probability PSk

(oi)

Sk ⇐ {Sk ∪ oi}
remove Cg from candidategroups

end while
if profit(Sk) > profit(Siterbest) then
Siterbest ⇐ Sk

end if
end for
Siterbest ⇐ RandomLocalSearch(Sk)
Siterbest ⇐ RandomItemSwap(Sk)
if profit(Sglobalbest) < profit(Siterbest) then
Sglobalbest ⇐ Siterbest

end if
Update pheromone trails w.r.t Siterbest

if pheromone value is lower than τmin then
set pheromone ⇐ τmin

end if
if pheromone value is greater than τmax then

set pheromone ⇐ τmax

end if
until maximum number of ycles reached or optimal solution found

is determined by the function G(Siterbest) = Q.profit(Siterbest), where Q =
1∑n

j=1 Pj
and profit(Siterbest) =

∑
oij∈Siterbest

vij .

Heuristic information The heuristic factor ηSk
(Oij) also depends on the

whole set Sk of selected objects. Let cSk
(l) =

∑
Oij∈Sk

rijl be the consumed
quantity of the resource l when the ant k has selected the set of objects Sk. And
let dSk

(l) = Rl − cSk
(l) be the remaining capacity of the resource l. We define

the following ratio:

hSk
(Oij) =

m∑
l = 1

rijl/dSk
(l) (3)

which represents the tightness of the object Oij on the constraints l relatively
to the constructed solution Sk. Thus, the lower this ratio is, the more the object
is profitable. We integrate the profit of the object in this ratio to obtain a pseudo-
utility factor. We can now define the heuristic factor formula as follows:

ηSk
(Oij) =

vij
hSk

(Oij)
(4)



Algorithm 2 Algorithm for Random Local Search
procedure RandomLocalSearch(S)
Input: a solution Sk

Output: an improved solution Sk or input if no improvemnt found

for a prespecified number of times do
Cg ⇐ Randomly select a group
for each object oi ∈ Cg other than the one in Sk do
Stmp ⇐ include oi removing the object selected in Cg

if Stmp not violates any resource constraints then
if profit(Sk) < profit(Stmp) then
Sk ⇐ Stmp

end if
end if

end for
end for

return Sk

Constructing a solution When constructing a solution, an ant starts with an
empty knapsack. At the k-th construction step (k ≥ 1), an ant randomly selects
a group and remove all the bad Candidates that violates resource constraints. It
then updates the local heuristic information of the remaining candidate objects
of the group and selects an object according to the following probability equation:

ρSk(Oij) =
[τSk

(Oij)]
α.[ηSk

(Oij)]
β∑

Oij∈Candidates[τSk
(Oij)]α.[ηSk

(Oij)]β
(5)

Here Candidates are all items from the currently selected group which do not
violate any resource constraints. The construction process stops when exactly
one item is chosen from each group.

Algorithm 3 Algorithm for Random Item Swap
procedure RandomItemSwap(S)
Input: a solution Sk

Output: an improved solution Sk or input if no improvemnt found

for a prespecified number of times do
for j = 1 to NUMBER-OF-ITEM-TO-FLIP do
Cg ⇐ Randomly select a group
Oi ⇐ Randomely select an item from Cg

Stmp ⇐ include oi removing the object selected in Cg

end for
if Stmp not violates any resource constraints then

if profit(Sk) < profit(Stmp) then
Sk ⇐ Stmp

end if
end if

end for
return Sk



Problem File Exact MOSER HEU CPCCP RLS FLTS FanTabu CCFT Ant-R Ant-T

I01 173 - 154 159 161 158 169 173 173 173

I02 364 294 354 312 354 351 354 352 364 364

I03 1602 1127 1518 1407 1496 1445 1557 1518 1598 1600

I04 3597 2906 3297 3322 3435 3350 3473 3419 3562 3563

I05 3905.7 1068.3 3894.5 3889.9 3847.3 3905.7 3905.7 3905.7 3905.7 3905.7

I06 4799.3 1999.5 4788.2 4723.1 4680.6 4793.2 4799.3 4799.3 4799.3 4799.3

I07 24587 20833 - 23237 23828 23547 23691 23739 24170 24158

I08 36877 31643 34338 35403 35685 35487 35684 35698 36211 36246

I09 49167 - - 47154 47574 47107 47202 47491 48204 48207

I10 61437 - - 58990 59361 59108 58964 59549 60285 60300

I11 73773 - - 70685 71565 70549 70555 71651 72240 72179

I12 86071 - - 82754 83314 82114 81833 83358 84282 84251

I13 98429 - - 94465 95076 91551 94168 94874 96343 96307

Table 1. Solution Quality Comparison

Random local search Random Local search described in Algorithm 2 is an
exhaustive search within a group to improve the solution. It replaces current
selected object of a group with every other object that do not violate resource
constraints and checks if it is a better solution. The total procedure is repeated
a number of times, each time for a random group.

Random Item Swap Random Item Swap described in Algorithm 3 is an
extended version of the random local search. In this case at a time, a specified
number (> 1) of objects are swapped with other random objects from the same
group without checking the resource constraints, then it checks if it is a valid
solution and if it improves the solution.

3.2 Variation 2: AntMMKP-topdatabase

In this variation (Algorithm 4), the only difference from AntMMKP-Random
is that, it maintains a database of top k solutions. After each iteration a small
amount of pheromone is deposited in the pheromone trails of the objects belong-
ing to the top k solutions. The motivation behind this strategy is to ensure quick
convergence on good solutions and to explore better areas more thoroughly.

4 Experimental Results

In this section, we assess the performance of the two algorithms, and compare
them to other heuristic algorithms available in the literature. The datasets we
use are the benchmark data of MMKPs from OR-library [20]. The algorithms
were coded in java and run on a PC with intel core 2 duo 2.8 Ghz CPU, 2GB



Algorithm 4 Algorithm AntMMKP-TopDb
Initialize pheromone trails to τmax

topkdb ⇐ ∅ {data structure that holds topmost k solutions}
repeat

Solution Sglobalbest ⇐ ∅
for each ant k in 1 . . . nants do

Solution Siterbest ⇐ ∅
candidategroups ⇐ all the groups
while candidategroups 6= ∅ do
Cg ⇐ Randomly select a group from candidategroups
Candidates ⇐ {oi ∈ objects in Cg that do not violate resource constraints}
update local heuristic values
Choose an object oi ∈ Candidates with probability PSk

(oi)

Sk ⇐ {Sk ∪ oi}
remove Cg from candidategroups

end while
if profit(Sk) > profit(Siterbest) then
Siterbest ⇐ Sk

end if
end for
Siterbest ⇐ RandomLocalSearch(Sk)
Siterbest ⇐ RandomItemSwap(Sk)
if profit(Sglobalbest) < profit(Siterbest) then
Sglobalbest ⇐ Siterbest

end if
update top database
Update pheromone trails w.r.t Siterbest

Update pheromone trails w.r.t topdatabase
if pheromone value is lower than τmin then

set pheromone ⇐ τmin

end if
if pheromone value is greater than τmax then

set pheromone ⇐ τmax

end if
until maximum number of cycles reached or optimal solution found

memory running Windows XP. The parameters are set as follows: nants = 50
(i.e., the number of ants is set to 50), α = 1, β = 5, ρ = 0.01 , k = 10 (for
AntMMKP-TopDb), τmin = 0.01 and τmax = 6 times the amount each ant
deposits if it selects an item. For random item swap we used four flip and run
1000 times, also in random local search the loop runs n ∗ 5 times, where n is the
number of groups.

Table 1 gives the comparison results of the performance of different algo-
rithms including our two algorithms, namely, AntMMKP-Random (Ant-R) and
AntMMKP-TopDb (Ant-T). For each instance, Table 1 reports the best solution
found by MOSER [21], HEU [1], CPCCP [12], RLS [13], FLTS [22], FanTabu [22],
CCFT [22] along with the exact solution reported in the data files and the best
solutions of Ant-R and Ant-T found in 1000 runs. The results of the other al-
gorithms were borrowed from [22]. Our algorithms clearly outperform all others
on each file. Notably, for datasets I01, I02, I05 and I06 they found the exact
solution.

If we compare the performance of the two algorithms, we see that Ant-T
outperforms Ant-R for smaller data files. This clearly justifies our reasoning
to maintain the database of top k solutions. The insight here is that where
exploration area is comparatively small, thoroughly exploring better areas can



give better solutions. But for large instances (file I10 and onward) the exploration
area is much larger. So letting the ant colony explore more area rather than to
converge to the better area so far seems preferable.

Figure 2 gives the time comparison of the two algorithms we developed.
It reports the average time (milliseconds, over 20 runs) taken by each of our
algorithm to reach within 3% of the known optimal solution for each of the
instance file. Considering the solution quality, each of the algorithms run quite
fast. Both of the algorithms give result before 1.5 seconds to reach within 3% of
the optimal solution for data file I13 which is quite a large instance of MMKP
consisting of 400 groups each having 10 objects and with number of resource
dimension being 10. So our algorithms are attractive for large scale real time
problems.

800

1000

1200

1400

1600

T
im

e
 (

m
il

li
se

co
n

d
s)

0

200

400

600

I01 I02 I03 I04 I05 I06 I07 I08 I09 I10 I11 I12 I13

T
im

e
 (

m
il

li
se

co
n

d
s)

Data File

Ant-R

Ant-T

Fig. 2. Time comparison between Ant-R and Ant-T to reach within 3% of the optimal
solution.

The random local search procedure presented in this paper improves the
solution quality greatly in each iteration. In Figure 3 we have run three variation
of Ant-R on instance file I07 with 100 groups, 10 items per group having resource
dimension 10. At first we run the algorithm without the random local search.
Then, we use a local search that we have developed earlier which tries to find a
better object replacing the current selected object from all the groups in a order
(not random). Finally the algorithm was executed with our random local search.
Figure 3 clearly shows that both versions of the local search strategy are quite
good for improving the solution, random local search being the better. From
this comparison we can understand that the order of the selection of group
while generating partial solution is very important to find good solutions for
MMKP.



23000

23200

23400

23600

23800

24000

24200

P
r
o

fi
t

22200

22400

22600

22800

23000

0 1000 2000 3000 4000 5000 6000

Number of Iteration

Random Local Search Local Search No Local Search

Fig. 3. Performance enhancement with our random local search.

5 Conclusions

This paper is a first attempt to solve MMKPs using ant colony optimization.
Here, we have proposed two new ACO algorithms for solving MMKPs along
with a novel random local search strategy for performance improvement. We
have presented simulation results, evaluating both runtime and solution quality
of the proposed algorithms, and compared the solution quality of our algorithms
with other existing state-of-the-art algorithms. From these simulation results it
is clear that, our algorithms are the best in terms of solution quality and can
also provide very fast near optimal solutions. The random local search seems to
have provided the boost needed for providing such good quality solutions.

Acknowledgments. This research work was carried out as part of the M.sc.
Engg. thesis of Shahrear Iqbal in the Department of Computer Science and
Engneering, Bangladesh University of Engineering and Technology.

References

1. Khan, S.: Quality Adaptation in a Multisession Multimedia System: Model, Al-
gorithms and Architecture. PhD thesis, Department of Electrical and Computer
Engineering, University of Victoria (1998) PhD dissertation.

2. Akbar, M.M., Rahman, M.S., Kaykobad, M., Manning, E.G., Shoja, G.C.: Solving
the multidimensional multiple-choice knapsack problem by constructing convex
hulls. Comput. Oper. Res. 33(5) (2006) 1259–1273

3. Dorigo, M., Di Caro, G.: The ant colony optimization meta-heuristic: New ideas
in optimization. McGraw-Hill Ltd., UK, Maidenhead, UK, England (1999)

4. Dorigo, M., Di Caro, G., Gambardella, L.M.: Ant algorithms for discrete optimiza-
tion. Artificial Life 5(2) (1999) 137–172



5. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm intelligence: From natural to
artificial systems. J. Artificial Societies and Social Simulation 4(1) (2001)

6. Parsons, S.: Ant colony optimization by marco dorigo and thomas stützle, mit
press, 305 pp, isbn 0-262-04219-3. Knowledge Eng. Review 20(1) (2005) 92–93

7. Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning ap-
proach to the traveling salesman problem. IEEE Trans. Evolutionary Computation
1(1) (1997) 53–66

8. Gambardella, L.M., Taillard, É., Agazzi, G.: Macs-vrptw: A multiple colony system
for vehicle routing problems with time windows. In: New Ideas in Optimization,
McGraw-Hill (1999) 63–76

9. Gambardella, L.M., Taillard, É., Dorigo, M.: Ant colonies for the quadratic assign-
ment problem. Journal of the Operational Research Society 50 (1 February 1999)
167–176(10)

10. Maniezzo, V., Colorni, A.: The ant system applied to the quadratic assignment
problem. IEEE Trans. on Knowl. and Data Eng. 11(5) (1999) 769–778

11. Khan, S., Li, K.F., Manning, E.G., Akbar, M.M.: Solving the knapsack problem
for adaptive multimedia systems. Studia Informatica Universalis 2 (2003) 157–178

12. Hifi, M., Michrafy, M., Sbihi, A.: Heuristic algorithms for the multiple-choice
multidimensional knapsack problem. Journal of the Operational Research Society
55 (December 2004) 1323–1332(10)

13. Hifi, M., Michrafy, M., Sbihi, A.: A reactive local search-based algorithm for the
multiple-choice multi-dimensional knapsack problem. Comput. Optim. Appl. 33(2-
3) (2006) 271–285

14. Parra-Hernandez, R., Dimopoulos, N.J.: A new heuristic for solving the multichoice
multidimensional knapsack problem. IEEE Transactions on Systems, Man, and
Cybernetics, Part A 35(5) (2005) 708–717

15. Leguizamon, G., Michalewicz, Z.: A new version of ant system for subset problems.
In: Evolutionary Computation, 1999. CEC 99. Proceedings of the 1999 Congress
on. Volume 2. (1999)

16. Fidanova, S.: Aco algorithm for mkp using different heuristic information. Lecture
Notes in Computer Science 2542 (2003) 438–444

17. Alaya, I., Solnon, C., Ghèdira, K.: Ant algorithm for the multi-dimensional knap-
sack problem. In: International Conference on Bioinspired Optimization Methods
and their Applications (BIOMA 2004. (2004) 63–72

18. Ji, J., Huang, Z., Liu, C., Liu, X., Zhong, N.: An Ant Colony Optimization Algo-
rithm for Solving the Multidimensional Knapsack Problems. In: Proceedings of the
2007 IEEE/WIC/ACM International Conference on Intelligent Agent Technology,
IEEE Computer Society (2007) 10–16

19. Stützle, T., Hoos, H.H.: Max–min ant system. Future Generation Computer
Systems 16 (2000) 889–914

20. Beasley, J.: OR-Library: Distributing test problems by electronic mail. The Journal
of the Operational Research Society 41(11) (1990) 1069–1072

21. Moser, M., Jokanovic, D., Shiratori, N.: An algorithm for the multidimensional
multiple-choice knapsack problem. IEICE transactions on fundamentals of elec-
tronics, communications and computer sciences 80(3) (1997) 582–589

22. Hiremath, C.: New heuristic and metaheuristic approaches applied to the multiple-
choice multidimensional knapsack problem. PhD thesis, Wright State University
(2008)


