
Flamingo: A framework for smartphone security context
management

Md Shahrear Iqbal, Mohammad Zulkernine
School of Computing

Queen’s University, Kingston, Ontario, Canada
{iqbal,mzulker}@cs.queensu.ca

ABSTRACT
The availability of powerful smartphones and the necessity
of security in mobile devices have made researchers pro-
pose multiple security modes (e.g., home, office, outdoor,
and financial) for such devices. In each mode, a user can
install a different set of apps. However, in most of the
cases, the user has to select the mode manually. If we can
sense the smartphone’s security context accurately, then
it is possible to switch between different security modes
automatically. Also, smartphone operating systems are be-
coming ubiquitous. As a result, mobile apps need to be-
have differently based on the security context (e.g., not
sending the data if the network is insecure). There exist
other research work that may detect the physical context
of a smartphone. However, we focus on sensing different
security parameters (e.g., location, is-network-encrypted)
and calculating the security context from the parameters.
In this paper, we propose Flamingo, a security context
management framework that maintains a cache of security
contexts and parameters to be used by the operating sys-
tem and third-party applications. As detecting contexts
requires the use of power-hungry smartphone sensors, a
comprehensive framework for sharing security parameters
among various applications can be beneficial in terms of
energy and other resource expenses. The implementation
of Flamingo as a part of the Android operating system
shows that it is effective in managing security contexts
and parameters.

CCS Concepts
•Security and privacy → Mobile platform security;

Keywords
Smartphone security; Multiple security modes; Security
context;

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, or republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a
fee.
SAC 2017,April 03-07, 2017, Marrakech, Morocco
Copyright 2017 ACM 978-1-4503-4486-9/17/04. . . $15.00
http://dx.doi.org/10.1145/3019612.3019726

1. INTRODUCTION
Smartphones have made communications much easier and
nowadays, they are the hub of people’s work and enter-
tainment. However, due to the age-old battle between se-
curity and usability, smartphones are often designed with
the preference of usability. The reason is that rigorous
security requires more involvement and knowledge from
users. All these conditions lead us to a vulnerable mo-
bile ecosystem where security and privacy are often com-
promised. The situation is even worse with the devices
that are released with smartphone operating systems (e.g.,
smart TVs, smart cars, smart fridges, smart ovens, smart
thermostats).

User contexts are important as smart devices are used for
many different purposes. In the context of security, hu-
mans can sense danger from external entities. In a simi-
lar way, in our opinion, the smartphone operating system
should also sense its security context and act appropri-
ately. Millions of apps, available from both trusted and
untrusted sources, offer services to users. However, users
usually have no or little idea about what these apps do in
the background. An operating system should not depend
on its users to take proper security measures all the time
which is tedious and often users do not have the knowledge
to do so correctly. As a result, an automatic detection of
security contexts and switching to an appropriate security
mode are necessary.

In the ubiquitous computing research, the term “context”
is associated with different meanings and interpretations.
For example, a context can be user’s location, his phys-
ical activity (walking, biking, running, etc.), or a list of
nearby devices. Many researchers work on context-aware
applications. In this paper, we are particularly interested
in detecting a smartphone’s “security context” so that the
operating system can enforce appropriate security policies
and facilitate security-aware applications. We define the
smartphone’s security context as follows:

The security context of a smartphone is the de-
gree of threat to the device’s resources. It is
a derived value from multiple parameters. The
value of a parameter can be acquired from any
smartphone sensors, or be derived from other
parameters.

To manage the security context and a set of security re-

Sensors
--Location
--Camera
--Microphone
--Accelerometer
--Radio

Security parameters
--Location
--Is-moving
--In-use
--Type-of-active-app
--Is-sideloaded
--Is-network-encrypted
--Number-of-trusted-devices
…

--Security context
--Subcontext

Flamingo Cache

Get

Subscribe

Callback
OS

Apps

Clients

Figure 1: Flamingo maintains a cache of security parameters and context, calculated from smartphone sensors. Clients can
get the values using the Flamingo API.

lated parameters, we design Flamingo1. Flamingo is ca-
pable of returning the phone’s context or the value of a
security parameter upon request. Flamingo uses differ-
ent phone sensors to determine the context and manages a
cache to reduce power consumption (by avoiding redundant
recalculation of security parameters). The initial contexts
and security parameters for Flamingo are identified based
on an online survey involving actual users.

The remainder of the paper is organized as follows. We de-
scribe Flamingo in Section 2 and evaluate it in Section 3.
A brief discussion on the related work is provided in Sec-
tion 4, and we summarize the paper in Section 5.

2. THE FLAMINGO SYSTEM
The architecture of the Flamingo system is shown in Fig-
ure 1. Flamingo acts as a middleware between its clients
(security-aware applications, operating system components,
etc.) and phone sensors. Flamingo maintains a cache
where it updates the context and security parameters on
a regular time interval. A comprehensive framework for
managing the security context and parameters will help
immensely to reduce power consumption.

Flamingo uses different sensors to calculate a set of security
parameters. The context and its subcontexts (a context
within another context) are derived from these parameters.
The context, as well as the values of these parameters, are
shared between applications via a system API. The API
exports the current context and also notifies subscribed
clients any context changes via callbacks. For example,
the operating system itself can be a client of Flamingo and
can use the context value to switch to a different security
mode. Third-party apps can use these values to behave
differently in different situations.

In this section, we examine the sensors available in a typi-
cal smartphone and describe how these sensors are used to
manage the security context and parameters. Some of the
descriptions will be Android specific as we implemented
Flamingo in Android.

1We choose this name due to the fact that Flamingos can
sense natural disaster early [1].

2.1 Smartphone sensors
One of the reasons that made phones smart is the availabil-
ity of sensors. Different types of sensors are now available
including accelerometer, gyroscope, rotation sensor, am-
bient light sensor, proximity sensor, temperature sensor,
etc. In addition to that, user’s location can be detected
using GPS, WiFi, Cell tower ID, and/or a combination
of these. To calculate the security parameters, Flamingo
uses the following sensors: location, camera, microphone,
accelerometer, and radio.

2.2 A user survey
We performed an online survey to determine the security
contexts and parameters necessary for an average user.
The participants completed an online questionnaire (hosted
in fluidsurveys.com) about their smartphone usage and
their perception of security and privacy. 88% of the survey
participants are between 19 and 39 years old and 97% of
them have at least an undergraduate degree. 87.5% par-
ticipants claim that they use their smartphones for work-
related tasks. 23.8% participants give their phones to their
children and they are not sure if it can cause any secu-
rity or privacy issues. 56.7% participants often connect to
open unsecured public WiFi networks. 62.1% participants
do not feel secure using financial apps on mobile devices.
64% participants think that a security app is necessary to
protect smartphone resources, however, 71% of them never
installed one.

We also asked participants about different security con-
texts and parameters that they think should be provided
by the underlying operating system. According to their
answers, we find that the essential security contexts for
an average smartphone user are home, office, and outdoor.
Moreover, in the home context, the phone can be in two
subcontexts, namely, casual and private. In the office con-
text, the phone should detect whether the user is in a
meeting. In addition, we identify another two subcontexts
(side-loaded, financial) and a number of security param-
eters. The parameters are Location, Place-type, Type-of-
user-activity, Is-moving, In-use, Is-locked, Type-of-active-
app, Is-side-loaded, Network-type, Is-network-encrypted, Is-
camera-on, Is-mic-on, Is-storage-encrypted, and Number-
of-trusted-devices. In the following subsections, we describe
how each of the parameter values is collected.

2.3 Security parameters
Flamingo maintains the value of Location using a number
of power efficient techniques. In smartphones, GPS takes
the highest power followed by WiFi and GSM. This is why
Flamingo uses a wide range geofence (120 meters) to detect
user’s home or office. It also responds to the location-
changed events generated by the Android location manager
(set to update every five minutes or if the location changes
more than 200 meters). If the location is neither home nor
office, then Flamingo sets the location as outdoor. At the
time of updating the Location, if the user is connected to
the internet, Flamingo tries to detect the type (Place-type)
of the location (restaurant, gym, park, cafe, hospital, etc.)
using the Google places API.

Flamingo detects whether the smartphone is moving and
updates Is-moving. It uses Google activity recognition API
which detects a user’s following activity: IN VEHICLE,
ON BYCYCLE, ON FOOT, RUNNING, STILL, TILTING,
WALKING, and UNKNOWN. The detected activity is sav-
ed in Type-of-user-activity. If the activity is STILL, Is-
moving is set to NO.

Flamingo updates In-use based on the on/off status of the
smartphone screen. In addition to that, it also uses the
status of the phone microphone and speaker. Flamingo
detects whether the phone is currently locked or unlocked
(Is-locked).

Flamingo categorizes (Type-of-active-app) every pre-install-
ed application as well as any new apps that the user in-
stalls. This information is obtained from the Google Play.

Flamingo detects whether the currently active app is side-
loaded (Is-side-loaded). Side-loaded means that the app is
not installed using the default market (i.e., Google Play).
Many popular paid apps are repackaged with malware and
distributed freely in third-party app markets.

Flamingo maintains the type of network (Network-type)
that is being used to connect to the internet. This can
be 2G, 3G, LTE, or WiFi. An unencrypted network is
considered insecure for a number of functionalities. As a
result, Flamingo updates Is-network-encrypted on a regular
interval and when any network change is detected.

Flamingo maintains whether the camera and the mic are
currently in use (Is-camera-on and Is-mic-on). The oper-
ating system may alert the user if it detects any suspicious
activity around these two sensors in certain contexts.

Is-storage-encrypted tells the encryption status of the cur-
rently mounted file system of the external storage.

Flamingo communicates with other devices in the same
network and maintains a list of available trusted devices
in each context (Number-of-trusted-devices). If the current
location is at home, then Flamingo may find the user’s
spouse’s phone, his smart TV, etc. and update the num-
ber. This parameter can be effective in some cases. For
example, if Flamingo detects that a number of trusted de-
vices are missing while the user is at home, then it can
generate an alert.

2.4 Security context detection
Using the values of the security parameters, Flamingo cal-
culates the security context. In Table 1, we list the con-
texts and subcontexts that Flamingo maintains. Note that
the choice of these contexts and subcontexts are based on
our user survey. However, Flamingo is completely flexible
about the choice of the contexts. In each context, multiple
subcontexts can be activated simultaneously. For example,
when the current context is outdoor, the subcontext can
be Restaurant (Place-type) and side-loaded. It means that
the user is actually using a side-loaded app while located
in an outdoor restaurant.

Security
Context

Subcontext

Home Casual, Private, Financial, Side-loaded
Office Casual, In-meeting, Financial, Side-loaded

Outdoor Place-type, Financial, Side-loaded

Table 1: Security contexts in Flamingo.

In Algorithm 1, we show how Flamingo switches to dif-
ferent contexts2. Flamingo always starts with sensing the
current location. If the location is detected as home, it
sets the subcontext as casual. However, if Flamingo de-
tects that the user turns on the camera and/or the micro-
phone, it sets the subcontext as private. This is due to the
fact that media files (e.g., images, audio, video) captured
inside a user’s home are normally private. The operat-
ing system may decide to store the files securely so that
other applications or malware cannot have an easy access
to them.

In the office context, Flamingo switches the subcontext
from casual to in-meeting according to the user’s meeting
schedule (as found in the calendar app) or when it detects
that the user is inside a meeting room. The operating
system can disable apps that can record audio or video in
this subcontext.

Flamingo also updates the subcontext if Is-side-loaded is
true or if Type-of-active-app is financial.

2.5 The Flamingo Cache
Currently, Flamingo implements a simple cache. At first,
it calculates the values of all the security parameters and
determine the current context and subcontexts based on
the values. After that, Flamingo inserts these values in
the cache with an expiry time. It updates the values of
the security parameters when they expire in the cache.
Operating system components or third-party applications
interact with Flamingo by requesting the value of a se-
curity parameter or the current context. If the requested
value is not expired in the cache, Flamingo returns the
value right away saving an access to the sensors. Clients
can also subscribe to Flamingo for a set of parameters.
In that case, Flamingo informs the clients of any detected
changes via callbacks.

2New contexts and security parameters can be introduced
to Flamingo with a very little effort.

Algorithm 1 Security Context Detection

1: procedure Flamingo Context . Detect security
context

2: while True do
3: if Location = HOME then
4: Context← Home
5: subcontext← Casual
6: while True do
7: if Mic = ON | Cam = ON then
8: subcontext← Private
9: else

10: subcontext← Casual
11: end if
12: Call Update
13: end while
14: else if Location = OFFICE then
15: Context← Office
16: subcontext← Casual
17: while True do
18: if In-Meeting = True then
19: subcontext← In−Meeting
20: else
21: subcontext← Casual
22: end if
23: Call Update
24: end while
25: else if Location = OUTDOOR then
26: Context← Outdoor
27: while True do
28: if Internet = ON then
29: subcontext← Place− Type
30: else
31: subcontext← Other
32: end if
33: Call Update
34: end while
35: end if
36: end while
37: end procedure

38: procedure Update . Update Context
39: if AppType = Sideloaded then
40: subcontext← Sideloaded
41: end if
42: if AppType = Financial then
43: subcontext← Financial
44: end if
45: if Location is changed then
46: exit loop
47: end if
48: end procedure

3. EVALUATION
In this section, we evaluate Flamingo in terms of accu-
racy, operational overhead, and usability. We implement
a prototype of Flamingo by modifying the Android Open
Source Project (Marshmallow version 6.0.0 r1 MRA58K
as of 2015/10/17). We deploy the resulted operating sys-
tem to a Google Nexus 5. It has Qualcomm MSM8974
Snapdragon 800 CPU (Quad-core 2.3 GHz) and Adreno

330 GPU with 2GB memory. It has the following sensors:
accelerometer, gyroscope, magnetometer, light, proximity,
pressure, and GPS.

3.1 Data Collection
Flamingo updates its internal cache with the values of the
security parameters and context every 5 minutes. After
it calculates a value, it inserts the value as a tuple in
the cache with the expiry time (e.g., {<Location, Home>,
300}). During this update, Flamingo writes the values with
a timestamp in a log file. We also develop an Android app
that requests the values of different security parameters
randomly using the Flamingo API (to access the cache pe-
riodically). If the current value of the requested parameter
is expired, Flamingo recalculates the value, updates the
cache, and returns the value to the app via a callback.
Otherwise, the value is returned from the cache directly.
We develop another app (to create the ground truth) that
interacts with the user and asks the values of different pa-
rameters time to time. The user inputs are also logged
with a timestamp.

3.2 Accuracy
We compare the two log files generated from both Flamin-
go and our user interaction app. Flamingo is 100% ac-
curate in detecting the context (Home, Office, Location)
described in Section 2. Flamingo also successfully detects
the private subcontext whenever a user turns on the cam-
era or the microphone while being inside his or her home.
The type of the currently opened app is also logged prop-
erly as side-loaded, financial or other. However, Flamingo
fails to detect whether the user is in a meeting if the
meeting information is unavailable in the user’s calendar.
Accurately detecting a room inside a building is an active
research area. However, by detecting user steps and with
the help of an indoor floor plan, researchers [10] are able
to pinpoint the indoor location with an acceptable accu-
racy. Unfortunately, this kind of technique consumes too
much power to be considered for Flamingo. Alternatively,
we plan to use the smart door locks that are available cur-
rently for enterprises. If a meeting or conference room in
an office has smart door locks, the smartphone can com-
municate with it to confirm the meeting location of the
user. Currently, Flamingo relies on the user calendar to
update the “In-meeting” parameter.

3.3 Operational overhead
In this subsection, we evaluate Flamingo in terms of per-
formance, memory and storage usage, and power consump-
tion. In each case, we show that there is a very little to
negligible overhead.

3.3.1 Performance
We quantify performance using a popular benchmarking
app (AnTuTu) available from the Android stores. The
app tests CPU and memory performance, 2D/3D graph-
ics, Multitasking, etc. It gives a score for each test which
can be used to compare relative performance between de-
vices. All numbers from the benchmarking app are aver-
aged over 10 runs. Table 2 shows the comparison of scores

resulted from the app. In our understanding, the difference
between the scores are really insignificant and it is clear
that the overall performance is not hampered by activating
Flamingo.

Test Group
Score

Stock Flamingo
3D 8680 8720
UX 15993 16026

CPU 16797 16598
RAM 6628 6525
Total 48098 47869

Table 2: Individual test scores from the AnTuTu bench-
marking app.

3.3.2 Memory and storage
Flamingo does not incur any memory overhead. Our mod-
ification changes two system files, namely, framework.jar
and services.jar. However, the changes in sizes (2.76K
bytes for the framework.jar and 11.15K bytes for the ser-
vices.jar) are insignificant. The storage requirement of
Flamingo is also negligible as it maintains a cache of a
few security parameters.

3.3.3 Power consumption
Although smartphones are becoming increasingly power-
ful day by day, they are still limited in battery capacity.
As a result, we design Flamingo to share security param-
eters and thus avoid recalculation. Indeed, we find that
Flamingo does not incur any overhead in terms of power.
We show that in Figure 2. We observe that the battery
charge level drops from 100% to 91% when Flamingo is
enabled and from 100% to 92% when Flamingo is disabled
during a period of 20 hours. During this time, we turned
the WiFi off so that the location service only uses GPS. We
moved the phone from office to home and then again home
to office. We also requested different parameter values ran-
domly every minute using multiple clients. However, the
phone’s screen remained off during the experiment. The
total number of processes running on the phone during
the experiment is 206. This experiment demonstrates that
sharing the security parameters among different applica-
tions is a good idea if multiple clients (apps) in the system
are requesting them.

3.4 Usability
In our opinion, a framework like Flamingo is necessary as
an integral part of the operating system. The security
model of the smartphone operating system cripples the
power of the third-party anti-viruses. To fight against the
rising threat of malware in smartphones and other smart
devices (cars, TVs, fridges, etc.), the operating system
needs to be a smart anti-malware itself [7]. Also, third-
party applications should be aware of the security context
of the phone and behave accordingly. For example, a fi-
nancial app may not want to send sensitive personal infor-
mation over an unencrypted network. Depending on the
context, the operating system may decide to maintain sep-
arate data profiles for applications. In that way, data used

0.9
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99

1
1.01

0 5 10 15 20 25

Flamingo disabled Flamingo enabled

B
at

te
ry

 c
ha

rg
e
le
ve
l

Figure 2: Battery charge level during a period of 20 hour.

in the office context can be protected from malicious apps
in other contexts. Certain apps can also be made disabled
in some secure contexts. Apps from unknown or untrusted
sources can be blocked from accessing resources using a
technique proposed in [8]. Also, Flamingo greatly reduces
power consumption as it manages a cache of values that
is shared among many applications. In our opinion, it is a
much better approach than the case where each individual
application is accessing the sensors to determine the values
arbitrarily.

4. RELATED WORK
Smartphone sensors have been used for different types of
application, e.g., detecting user activities [5], detecting lo-
cation [11, 2], monitoring health status [15], finding people
based on similar interests [3]. TransitGenie [4] uses WiFi,
GPS, and accelerometer to distinguish between activities
(e.g., walking, driving). Zheng et al. [18] use GPS history
data to infer transport modes.

In [9, 12], the authors propose frameworks for context
monitoring. They also investigate the energy consump-
tion of their monitoring systems. Energy consumption is
the main issue while designing a sensor-based system as
smartphones are limited in battery capacity. Continuous
use of sensors exhausts the battery quickly which the users
may not like. The temporal correlation between different
contexts to infer some values without accessing actual sen-
sors is proposed by Nath [13] to enhance the energy profile.
To consume less energy, adaptive sampling based on user’s
current context is used in systems like Jigsaw [12] and
Sociable Sense [16].

A number of papers [6, 17, 14] address context-sensitive ac-
cess control in Android devices. However, none of these ad-
dress a comprehensive security context management frame-
work and propose sharing of security parameters between
applications.

5. CONCLUSION AND LIMITATIONS
We present Flamingo, a framework for managing smart-
phone’s security context. In our opinion, it is helpful for

developing effective anti-malware capabilities in an oper-
ating system. It also facilitates security-aware third-party
applications. Flamingo manages a cache of security param-
eters calculated from the smartphone sensors. The security
context can be used by the operating system to enforce
different restrictions. Flamingo also exports a system API
that can be used to query the current context and/or the
security parameters. The Flamingo cache enables sharing
values among multiple clients which greatly reduces power
consumption of the phone. We evaluated Flamingo and
found that it accurately calculates different values of the
security parameters. However, the Flamingo cache is not
yet smart enough to infer the values of some parameters
from other parameters which can further lessen the power
requirement. In the future, we plan to implement an in-
ference engine for the Flamingo cache.

6. ACKNOWLEDGMENTS
This work is partially supported by the Natural Sciences
and Engineering Research Council of Canada (NSERC)
and the Canada Research Chairs (CRC) program.

7. REFERENCES
[1] Can your pet sense disasters? https://blogs.cdc.gov/

publichealthmatters/2012/10/pet-sense-disaster/.
Accessed: 2016-10-06.

[2] M. Azizyan, I. Constandache, and
R. Roy Choudhury. Surroundsense: mobile phone
localization via ambience fingerprinting. In
Proceedings of the 15th annual International
Conference on Mobile Computing and Networking,
pages 261–272. ACM, 2009.

[3] N. Banerjee, S. Agarwal, P. Bahl, R. Chandra,
A. Wolman, and M. Corner. Virtual compass:
relative positioning to sense mobile social
interactions. In Proceedings of the International
Conference on Pervasive Computing, pages 1–21.
Springer, 2010.

[4] J. Biagioni, A. Agresta, T. Gerlich, and J. Eriksson.
Transitgenie: a context-aware, real-time transit
navigator. In Proceedings of the 7th ACM Conference
on Embedded Networked Sensor Systems, pages
329–330. ACM, 2009.

[5] T. Y.-H. Chen, A. Sivaraman, S. Das,
L. Ravindranath, and H. Balakrishnan. Designing a
context-sensitive context detection service for mobile
devices. MIT Computer Science and Artificial
Intelligence Laboratory, Tech. Rep., 2015.

[6] M. Conti, V. T. N. Nguyen, and B. Crispo. Crepe:
Context-related policy enforcement for Android. In
Information Security, pages 331–345. Springer, 2011.

[7] M. S. Iqbal and M. Zulkernine. SAM: A Secure
Anti-Malware Framework for Smartphone Operating
Systems. In Proceedings of the IEEE Wireless
Communications and Networking Conference (WCNC
2016), pages 1–6. IEEE, 2016.

[8] M. S. Iqbal and M. Zulkernine. ZoneDroid: Control
your Droid through Application Zoning. In
Proceedings of the 11th International Conference on

Malicious and Unwanted Software (MALCON), pages
113–120. IEEE, 2016.

[9] S. Kang, J. Lee, H. Jang, H. Lee, Y. Lee, S. Park,
T. Park, and J. Song. Seemon: scalable and
energy-efficient context monitoring framework for
sensor-rich mobile environments. In Proceedings of
the 6th International Conference on Mobile Systems,
Applications, and Services, pages 267–280. ACM,
2008.

[10] F. Li, C. Zhao, G. Ding, J. Gong, C. Liu, and
F. Zhao. A reliable and accurate indoor localization
method using phone inertial sensors. In Proceedings
of the International Conference on Ubiquitous
Computing, pages 421–430. ACM, 2012.

[11] K. Lin, A. Kansal, D. Lymberopoulos, and F. Zhao.
Energy-accuracy trade-off for continuous mobile
device location. In Proceedings of the 8th
International Conference on Mobile Systems,
Applications, and Services, pages 285–298. ACM,
2010.

[12] H. Lu, J. Yang, Z. Liu, N. D. Lane, T. Choudhury,
and A. T. Campbell. The jigsaw continuous sensing
engine for mobile phone applications. In Proceedings
of the 8th ACM Conference on Embedded Networked
Sensor Systems, pages 71–84. ACM, 2010.

[13] S. Nath. Ace: exploiting correlation for
energy-efficient and continuous context sensing. In
Proceedings of the 10th International Conference on
Mobile Systems, Applications, and Services, pages
29–42. ACM, 2012.

[14] M. Nauman, S. Khan, and X. Zhang. Apex:
extending Android permission model and enforcement
with user-defined runtime constraints. In Proceedings
of the 5th ACM Symposium on Information,
Computer and Communications Security, pages
328–332. ACM, 2010.

[15] T. Pascu, M. White, N. Beloff, Z. Patoli, and
L. Barker. Ambient health monitoring: The
smartphone as a body sensor network component.
InImpact: The Journal of Innovation Impact, 6(1):62,
2016.

[16] K. K. Rachuri, C. Mascolo, M. Musolesi, and P. J.
Rentfrow. Sociablesense: exploring the trade-offs of
adaptive sampling and computation offloading for
social sensing. In Proceedings of the 17th Annual
International Conference on Mobile Computing and
Networking, pages 73–84. ACM, 2011.

[17] G. Russello, M. Conti, B. Crispo, and E. Fernandes.
Moses: supporting operation modes on smartphones.
In Proceedings of the 17th ACM Symposium on
Access Control Models and Technologies, pages 3–12.
ACM, 2012.

[18] Y. Zheng, L. Liu, L. Wang, and X. Xie. Learning
transportation mode from raw gps data for
geographic applications on the web. In Proceedings of
the 17th International Conference on World Wide
Web, pages 247–256. ACM, 2008.

