
Droid Mood Swing (DMS): Automatic security
modes based on contexts

Md Shahrear Iqbal, Mohammad Zulkernine

School of Computing
Queen’s University, Kingston, Ontario, Canada

{iqbal, mzulker}@cs.queensu.ca

Abstract. Smartphones are becoming ubiquitous and we use them for
different types of tasks. One problem of using the same device for multiple
tasks is that each task requires a different security model. To address this
problem, we introduce Droid Mood Swing (DMS), an operating system
component that applies different security policies to detected security
modes automatically. DMS uses a context manager that tracks the con-
text of the phone from the available sensors. DMS then determines the
security mode from the contexts and can impose a number of security
measures, namely fine-grained permissions, an intent firewall, a context-
aware SD card filesystem, and a permission verification system. The per-
mission verification system uses machine learning techniques to detect
suspicious apps and anomalous permission requests. DMS also provides
an API that enables third-party developers to make their apps behave
differently in different modes. DMS is designed especially for end users
and does not compromise the usability of the phone. Device vendors will
be able to control configurations (a switching logic and security policies)
of the modes through DMS. We implement DMS using the Android Open
Source Project (AOSP) and evaluate it in terms of portability, function-
ality, security, and operational overheads. The evaluation results show
that DMS offers a more secure smartphone operating system without
incurring any noticeable overhead.

Keywords: context-dependent security, smartphone security and privacy, An-
droid security, mobile malware

1 Introduction

Smartphones are already an integral part of our daily life. People use their smart-
phones for tasks that require different levels of security, e.g., writing emails,
surfing the web, listening to music, watching videos, playing games, perform-
ing financial transactions, and creating reports. Companies now allow BYOD
(Bring Your Own Device) policy, which lets the employees bring and use their
own smartphones for accessing confidential business resources. As a result, com-
panies want the security of their resources and the ability to manage their de-
vices remotely. To address the problem, researchers proposed isolated environ-
ments [24,39] (e.g., using virtualization techniques) on the device with different

controllable security properties. However, we observe a lack of research propos-
ing similar solutions for end users. Users also have their own set of apps for
personal use and they do not want to compromise their privacy due to malware
or apps provided by their workplaces. Moreover, with the advent of the internet
of things (IoT), people are expected to use their smartphones to control other
devices (smart TVs, smart fridges, etc.) and new smartphone payment services
(e.g., Google Wallet and Apple Pay) require extra security measures.

Despite all the threats, the security model of smartphone operating systems
distributed to the normal users is changing at a slow pace. Since a single device is
being used by mostly security unaware users, we strongly believe that automatic
detection of the device context and switching to different security modes to
protect user resources are now a necessity.

In this paper, we propose Droid Mood Swing (DMS), a system that applies
fine-grained access control to the detected security mode. To detect the security
mode, DMS uses Flamingo [23] that maintains a cache of security contexts and
parameters to be used by operating system components and third-party appli-
cations. For example, if the user is using the camera app inside his or her home,
the phone will switch to a mode where captured resources will be saved securely.
It is designed in a way so that device vendors can manage the modes and their
configurations. We define a number of security modes that cover almost all the
necessary tasks of a regular user. A language is also developed to automate the
process of configuring different modes. Each mode will have a configuration file
which describes the access control policies of the mode.

DMS can apply fine-grained access control which consists of the ZoneDroid [22]
tool and a number of security measures (called “restrictions” in this paper).
ZoneDroid realizes the concept of application zones to sandbox a group of appli-
cations. Each zone has policies to control the behavior of the apps. However, in
ZoneDroid, users have to customize zones and policies by themselves and there
was no concept of security contexts. In this paper, we automate the process of
configuring each mode to reduce user involvement, thus improving usability.

In particular, this paper makes the following contributions:

– We propose DMS that can switch to multiple security modes based on the
detected context and applies fine-grained access control to satisfy the security
requirements of each mode.

– We develop several restrictions to facilitate access control, namely an intent
firewall (IPC restriction), a context-aware SD card filesystem (file access
restriction), and a permission verification system (permission restriction).

– We develop a configuration language to automate the process of configuring
ZoneDroid and restrictions without requiring any input from users.

– We provide an API for app developers so that apps can be programmed to
behave correctly in different security modes and honor the security policies
of each mode.

To implement DMS, we use the open source Android operating system. How-
ever, the concept of DMS is not restricted to any particular smartphone oper-
ating system. All operations of DMS are completely transparent to users. We

also evaluate DMS in terms of performance and storage overhead and show that
they are negligible.

In today’s highly connected environment, a system like DMS can consider-
ably improve the security of a regular user. Device vendors (Samsung, Google,
OnePlus, Asus, Sony, etc.) can use DMS to manage security modes and ensure
the safety of device resources.

The remainder of the paper is organized as follows. Section 2 provides the
necessary technical background on Android permission model. We illustrate the
design and operation of DMS in Section 3. We evaluate DMS in Section 4 and
describe the related work in Section 5. Finally, we conclude in Section 6 with a
little discussion on the limitations and future work.

2 Background

Security in the smartphone ecosystem begins from the application market so
that malware cannot enter the device through markets. Most markets review
submitted applications and provide a mechanism to sign them. Smartphone op-
erating systems also provide a layered approach towards protection. Normally,
they consist of a lower level kernel and a middleware. For example, Apple iOS
uses the darwin kernel and a middleware written in C.

2.1 Android security

Android is a Linux-based open source operating system and consists of the Linux
kernel (with over 250 patches for Android [1]), a Java middleware (called the
Android framework), and stock applications (phone, contacts, etc.). Android
security is mainly built upon a permission-based mechanism which restricts ac-
cesses to device resources. In this subsection, we provide a description of the
permission model of Android Marshmallow which introduced a new enforcing
technique.
Permissions in Android. Android uses permissions to protect system compo-
nents, APIs, and resources. A permission is simply a unique text string. There
are more than hundred permissions [2] defined in the Android operating sys-
tem. In addition to the Android defined permissions, application developers can
declare customized permissions to protect their resources.

A permission can be associated with one of the following four protection lev-
els [3]: normal, dangerous, signature, signature-Or-System. According to develo-
per.android.com, normal permissions are low-risk permissions and dangerous
permissions are for sensitive resources. Normal permissions are given at install
time and cannot be revoked by the user. However, for dangerous permissions,
users are notified at runtime. An application can continue only when the user
allows the requested permission. More importantly, now users can revoke dan-
gerous permissions later.

In Android, each application is assigned a unique user id (UID). Based on
the UID, the kernel provides the application sandboxing. In addition, Android

permission mechanism enforces access control in two levels. In one level, the
system server process (in Android framework) ensures that the calling compo-
nent has the necessary permission. In another level, a number of permissions are
enforced by the underlined Linux’s discretionary access control (DAC). We call
these permissions “granted permissions”.

When an application process is created by the activity manager, it maps the
granted permissions to the corresponding groups. The group IDs are then passed
to the zygote process which forks itself and sets appropriate group IDs. Zygote is
a daemon which is started by the system init and responsible for the creation
of new processes. These permissions are given to the virtual machine process
and dynamic permission checks will not occur for some of these permissions.
As an example, the INTERNET permission in Android is mapped to the Linux
inet user group and consequently, internet access is controlled by the underlying
Linux kernel.

3 DMS Architecture and Operation

This section describes the architecture and operation details of DMS. One of
the goals of DMS is to make the smartphone operating system security-aware.
DMS does this without creating multiple personas or compartments. In many of
the related research, creating separate compartments for abstracting data and
apps is common. However, in our opinion, those approaches require far more user
involvement. DMS switches to different security modes based on the detected
context. Once a mode is activated, DMS can restrict certain app behaviors to
protect resources. Here, data and apps are not isolated. Rather, we modify the
filesystem and other OS components to deny access intelligently. The overhead
of doing so is much less in comparison to other compartmentalization techniques.
DMS does not require any input from users. A description of different compo-
nents of DMS along with its architecture is given in the following subsections.

3.1 DMS architecture

The architecture of DMS is presented in Figure 1. DMS Manager is the controller
of DMS and connects with vendors to get configuration files. To switch modes,
it uses context information from the Flamingo context manager [23]. Flamingo
defines a smartphone’s security context as the degree of threat to the device’s
resources. It uses different phone sensors to determine the context and a number
of security parameters. Flamingo exports these parameters and manages a cache
to reduce power consumption (by avoiding redundant recalculation).

Based on the configuration, the DMS Manager uses the ZoneDroid Manager
to modify zones and policies. All changes are written to an SQLite database
named DMS.db. To implement features of DMS, we modify a number of oper-
ating system components. The components call the DMS Manager before per-
forming their intended tasks. DMS also has a native service which communicates
with other native components (e.g., the SD card filesystem) and performs actions
that require root privileges (e.g., issues iptables command).

Zone Policy
Enforcer

Zone and Policy
Service

Android
Application Framework

High Privilege App
ZoneApp 2

New App Zone

App 1

DMS.db

Flamingo Context
Manager

ZoneDroid ManagerDMS Manager

Protected area of
the framework

Framework Hooks

Smartphone Vendors

DMS Native
Service

Fig. 1: The architecture of DMS.

3.2 DMS security modes

Each security mode is a unique combination of zones, policies, rules, and re-
strictions. Restrictions are components (that can be activated or deactivated) to
restrict certain phone features. Below, we define these terms.

Definition 1 (Security Mode). A mode m = (Lm, Z, T, s) is defined by a
label Lm, a set of zones Z, a set of Restrictions T , and a security level s. A
configuration function fmc(m, s) : M → C maps the mode and the security level
to a unique configuration, where M is the set of modes and C is the set of
configurations.

Definition 2 (Zone). A zone z = (Lz, P,A) is defined by a label Lz, a set
of policies P , and a set of Applications A. An application in the device can be
assigned to only one zone at any given time. The zone policy enforcer function
fzpe defines the complete set of conditions under which an application in zone z
is allowed to call another component or system API.

Definition 3 (Policy). A policy p is a set of rules R that defines the conditions
under which an application is granted a number of permissions. A policy checker
function fpc(o) is defined as r1 ∧ r2 ∧ r3 ∧ · · · ∧ rn → {permit, deny}, where o is
a permission and n is the number of rules in the policy. In the case of a conflict,
the rule with the deny will prevail.

Definition 4 (Rule). A rule r takes the form (o, V , e), where for a permission
o, we can denote a set of attributes and values and an action e. Here, V is a set
of 2-tuples of the form < attribute, value >.

For example, the rule (SEND SMS, {<TIME, 8AM TO 5PM>,<PHONENO,
N>}, DENY) restricts apps in a zone to send SMSs to the number N from 8AM
to 5PM.

Default security modes. Default security modes of DMS are based on se-
curity contexts detected by Flamingo. Flamingo detects the following contexts:
home, office, and outdoor. Moreover, in the home context, the phone can be in
two subcontexts (context within another context), namely casual and private.
In the office context, the phone detects whether the user is in a meeting. In
addition, Flamingo identifies another two subcontexts (side-loaded, financial)
and a number of security parameters. The parameters are Location, Place-type,
Type-of-user-activity, Is-moving, In-use, Is-locked, Type-of-active-app, Is-side-
loaded, Network-type, Is-network-encrypted, Is-camera-on, Is-mic-on, Is-storage-
encrypted, and Number-of-trusted-devices. Based on the context, subcontexts,
and parameters, DMS provides the following security modes:

Home-casual. In this mode, the smartphone is located in user’s home. DMS
blocks all dangerous permissions for office apps (camera, mic, etc.).

Home-private. DMS switches to this mode whenever a user turns on the camera
or the mic inside his or her home. Files saved in this mode will be denied access
from any other mode.

Home-financial. DMS activates this mode when the user opens a financial app.
DMS restricts unencrypted network and inter-process communication in this
mode.

Office-casual. DMS activates this mode when the location of the phone is office.
All dangerous permissions are blocked for personal apps.

Office-private. DMS switches to this mode if the In-meeting security parameter
is true. All background sensor accesses are blocked in this mode.

Office-financial. Similar to the Home-financial mode.

Outdoor-casual. If the smartphone is not in office or home, DMS activates the
outdoor-casual mode.

Outdoor-financial. Similar to the Home-financial mode. In addition, if the Place-
type is a place with a point of sale (POS) terminal (grocery stores, malls, restau-
rants, etc.) and an NFC payment app is active, DMS blocks all network accesses
(internet, NFC, Bluetooth) to other apps. Inter-process communication is also
restricted.

3.3 Fine-grained permissions

DMS uses ZoneDroid [22] that provides an efficient solution to control a group of
applications easily. Each zone provides a certain level of privileges. By default,
DMS creates the following zones: New, Trusted, Untrusted, High privilege, Of-
fice, and Restricted (for malware). The separation of application zones is anal-
ogous to the separation of industrial and residential areas in a smart city [21]
where each area has their own security policies and a person has to adhere to
the policies based on his or her location. It is worth mentioning that all system
apps go to the Trusted app zone and all newly installed apps go to the New
app zone. Users have to move them to either the Trusted zone or the Untrusted
zone. Users should also keep in mind that default policies are liberal for apps in
the Trusted and High Privilege zone (e.g., antiviruses).

DMS can deny permissions based on the following three attributes: time,
phone number, and folder location. Attributes and their values become members
of the set V . The set V and a decision to allow or deny make a permission fine-
grained. Each fine-grained permission forms a rule r and a number of rules
(R) constitute a policy p as described in the previous Subsection. We list a
sample policy with four rules in Listing 3.1. The policy denies access to location,
contacts, and all folders other than FOLDER1 from 10PM to 8AM. It also
restricts sending SMSs to phone number N.
DMS zone operations. Using ZoneDroid, DMS can create/edit/delete zones,
policies, and rules. For example, DMS can create a new zone, rename a zone, or
move apps from one zone to another. It can create a new policy with multiple
rules, or edit/add/delete rules in an existing policy. DMS can also disable a zone.
Disabling a zone will block all the apps that belong to the zone from executing.

{ACCESS FINE LOCATION,{<TIME,10PM 8AM>} ,DENY}
{READCONTACTS,{<TIME,10PM 8AM>} ,DENY}
{SEND SMS,{<TIME,ALWAYS>,<PHONENO,N>} ,DENY}
{WRITE EXTERNAL STORAGE,{<TIME,10PM 8AM>,<FLOC,FOLDER1>} ,ALLOW}

Listing 3.1: A policy with four rules.

3.4 Context-aware filesystem

We modify the Android SD card filesystem (written in C) to make it context-
aware. Android uses FUSE [5] to emulate FAT on SD card. The modified filesys-
tem connects with the DMS native service using an abstract Unix domain socket
to get the value of the current mode. It then writes the information in the ex-
tended attribute of the underlying ext4 filesystem. If file access restriction is
enabled, the SD card will deny access to files that are not created in the current
mode.

3.5 Inter-process communication (IPC) firewall

A technique is developed to allow blocking of all inter-process communications
to and from a zone and to and from any particular app. In Android, all intents
pass through an intent firewall to allow custom rules for IPC to be applied. We
modify the file and now the intent firewall consults with DMS before allowing any
intent if IPC restriction is enabled. This restriction can be useful in a scenario
where a benign app has vulnerabilities that other malicious apps can exploit via
IPC.

3.6 Restrict network

DMS can block communications to and from the internet per application, per
zone or per mode. For example, if the current network is detected as insecure
by Flamingo, a mode can block part of the system from communicating with

the internet. DMS native service implements the network blocking mechanism
by issuing iptables rules.

3.7 Permission verification

The permission verification system allows DMS to block anomalous permissions.
The steps of the permission verification are as follows:

1. DMS collects information from Google Play and the VirusTotal [34] website
and applies machine learning classification to detect suspicious (probably
malicious) apps and anomalous permission requests. VirusTotal is a website
that analyzes applications by more than 60 well-known antiviruses and gives
a score that tells how many antiviruses have recognized the app as malicious.

2. DMS separates the collected information based on app categories. For exam-
ple, in Google Play, there are more than 50 categories. Some examples are
Education, Personalization, Lifestyle, Entertainment, Music & Audio, and
Travel & Local.

3. DMS trains a classifier for each category that predicts the suspiciousness of
new apps. Here, DMS considers an app suspicious if its VirusTotal score is
more than 0.

4. DMS also determines the permissions that are not in the set of top 30 most
used permissions of the non-suspicious apps. These are the anomalous per-
mission requests.

Features. DMS uses permissions and review scores as features for the classifiers.
Permission usage is a good way to cluster well-behaved applications and used
in the existing literature [20]. The feature review score is calculated from the
actual review score from the app market (which is an average) and the number
of reviews as a low review count may bias the classifier. To normalize this impact,
we use the following formula [12] to calculate the score:

review score = Ps + 5(1− P)(1− e
−q
Q)

Here, s is the review score and q is the number of reviews. After some exper-
iments, we use P = 0.7 and Q = 5, 000 as these values give a satisfactory feature
importance for the review score.
Classifiers. DMS can use most of the common classifiers for supervised learning.
In this work, we investigate the following classifiers: Naive Bayes, Support Vector
Machine (SVM) with Radial Basis Function (RBF) kernel, Decision Tree, K-
Nearest Neighbors, and Random Forest [13]. To compare the effectiveness of the
classifiers, we report the precision, recall, and F1 score.

3.8 DMS configuration language

The configuration language can describe a set of actions to be performed when
switching modes. It supports creating/deleting/disabling zones, moving applica-
tions between zones, and applying a set of policies to any zone. It can describe
which restrictions should be activated on the current mode and the conditions
of switching the mode. We demonstrate some actions in Listing 3.2.

1 CHECK SWITCHING -CONDITION:
2 IF SECURITY -PARAM IS TRUE/FALSE
3 MESSAGE USER "SWITCHING TO MODE MODE -NAME NOT POSSIBLE , SECURITY -

PARAM IS TRUE/FALSE"
4
5 SCOPE MODE -NAME:
6 RESTORE ORIGINAL
7 UPDATE
8 CREATE ZONE: ZONE -NAME
9 DELETE ZONE: ZONE -NAME

10 DISABLE ZONE: ZONE -NAME
11 MOVE APPS: FROM ZONE -NAME1 TO ZONE -NAME2: ALL
12 MOVE APPS: FROM ZONE -NAME1 TO ZONE -NAME2: ALL EXCEPT CURRENT
13 APPLY POLICY:
14 ZONE ZONE -NAME1:
15 {READ_CONTACTS ,{<TIME_ALWAYS >,DENY}
16 {GET_ACCOUNTS ,{<TIME_ALWAYS >,DENY}
17 ZONE ZONE -NAME2:
18 POLICY: POLICY -NAME1
19 RESTRICT IPC ZONE -NAME3
20 RESTRICT IPC ZONE -NAME4 APP -NAME1 , APP -NAME2
21 RESTRICT FILE -ACCESS
22 RESTRICT NETWORK IF SECURITY -PARAM IS TRUE/FALSE
23 RESTRICT PERMISSION

Listing 3.2: Examples of actions in the DMS configuration language.

3.9 DMS developer API

DMS provides an API for the developers. Using the API, app developers can
determine the policies and restrictions of the current mode and make their apps
behave accordingly.

4 Evaluation

In this section, we describe the evaluation results of DMS. First, we evaluate the
classifiers for the permission verification system. Then, we evaluate DMS in terms
of portability, functionality, security, and operational overheads. We implement
DMS by modifying the Android Open Source Project (Marshmallow version 6.0.1
r17 MMB29V). We deploy the resulted operating system to a Google Nexus 5. It
has Qualcomm MSM8974 Snapdragon 800 CPU (Quad-core 2.3 GHz), Adreno
330 GPU with 2GB memory, and the following sensors: accelerometer, gyroscope,
magnetometer, light, proximity, pressure, and GPS.

4.1 Evaluation of the classifiers for the permission verification
system

To detect anomalous permission requests and suspicious apps, we need an ap-
propriate permission request classifier. The classifier should identify most of the
suspicious apps (maximize the recall) and also needs to be reasonably accurate
(low false positives). To select the best classifier, we calculate the effectiveness
of the classifiers on the ground truth dataset.

Ground truth. We select 14,674 apps from the androzoo [7] Android database.
All the apps belong to the PERSONALIZATION category. PERSONALIZA-
TION is one of the top 10 categories in Google Play and androzoo has the
highest number of suspicious apps in this category. Among 14,674 apps, 10,316
apps are benign (VirusTotal score is 0) and 4,358 apps are suspicious (VirusTotal
score is more than 5).

To build the dataset, we write a node.js script to visit the selected apps in
Google Play. We collect the details and permission list of all the apps. From the
app details, we only consider the application review score and the review count.
We then divide the dataset into two parts: Training and Testing. Some details
on the ground truth dataset are listed in Table 1.

Table 1: Number of mobile apps selected for the ground truth dataset.

Number of Apps Training Testing

Benign 7,000 3,316

Suspicious 3,000 1,358

Total 10,000 4,674

Select the appropriate classifier. From the ground truth dataset, we generate
the features and then use the selected classifiers (described in Subsection 3.7) to
classify an app as either benign or suspicious. Table 2 shows the comparison of
the precision, recall and F1 score of the various classifiers.

Table 2: Performance of different machine learning classifiers. For each classification
algorithm, we report the precision, recall, F1 score, and support.

Algorithm Class Precision Recall F1 Score Support

NaiveBayes
0 0.95 0.04 0.08 3,316
1 0.30 0.99 0.46 1,358

avg/total 0.76 0.32 0.19 4,674

SVM
0 0.86 0.96 0.91 3,316
1 0.86 0.63 0.73 1,358

avg/total 0.86 0.86 0.86 4,674

DecisionTree
0 0.93 0.93 0.93 3,316
1 0.84 0.83 0.83 1,358

avg/total 0.90 0.90 0.90 4,674

15kNN
0 0.93 0.93 0.93 3,316
1 0.83 0.82 0.83 1,358

avg/total 0.90 0.90 0.90 4,674

RandomForest
0 0.94 0.94 0.94 3,316
1 0.85 0.85 0.85 1,358

avg/total 0.91 0.91 0.91 4,674

In the ground truth data, RandomForest has the highest average precision
and recall of 0.91 and 0.91. It also has the highest F1 score of 0.91. NaiveBayes
and SVM have poor recall values compared to other classifiers. In conclusion,
we decide to use the Random Forest classifier.
Discussion on machine learning. DMS permission verification system is used
to perform a second-level verification from the user if the sought permission is

from an app which is either classified as suspicious or the permission is in the
anomalous permission list. If turned on, DMS blocks unusual permissions and
notifies the user. If the user wants, he or she can allow the permission and let
the app perform its task. The type of the problem (i.e., providing suggestions
to users) encouraged us to use machine learning techniques and the results of
machine learning algorithms are often much more accurate than human-crafted
rules. It gives us a quick overview on the nature of the apps and anomalous
permissions. Here, the chosen Random Forest classifier correctly classifies 85%
of the suspicious apps.

4.2 Portability

Other than the Google Nexus lines of devices, all manufacturers ship their own
versions of Android. They provide a custom experience of Android which requires
modifications to the AOSP project. The modifications required for implementing
DMS components can be applied to the AOSP project easily. Notably, DMS uses
the modified permission mechanism of Android which was introduced in version
6.0. As a result, DMS can only be implemented in Android version 6.0 and above.
However, this does not impact the execution of apps that are developed for older
versions of Android.

4.3 Functionality

Security mode switching. To test the effectiveness of DMS, we move the
phone to home, office, and outdoor. Also, a banking app is used as a financial
app. DMS successfully detects the eight modes described in Subsection 3.2 and
applies mode configurations. No applications are crashed (including the open
one) during a mode switch. This is because changes in the zone configuration
are applied directly to the DMS.db database and restrictions are enforced in
the framework layer of Android. However, an already allowed permission may
be rejected in the new mode. Applications that are built for Android version
6.0 and above handle the case gracefully and often ask for the permission again.
Users can decide to click on the “Do not ask again” checkbox to prevent further
permission requests.
Fine-grained permissions and restrictions. We develop a simple applica-
tion performing the following sensitive operations: initiate network connections,
access user’s photos, access the contact list, and access the camera. We install
the app in the Untrusted zone. We observe that when the app opens the phone’s
camera inside the home, the phone switches to the Home-private mode. All the
images taken in this mode are saved securely via the context-aware filesystem.
The app cannot send them over the internet as networks are restricted in this
mode. As soon as the app closes the camera, the phone switches to the Home-
casual mode and the app has no longer access to the images taken. Also, in the
Home-private mode, IPC is restricted for apps inside the Untrusted zone. As a
result, the app cannot share the captured images via IPC to other apps that
can leak the images. When the app tries to access the phone’s contact list, DMS

blocks the request and notifies the user. We then move the phone to an outside
cafe (where the network is open and unencrypted) and try to open the banking
app. DMS gracefully blocks the internet for the app and notifies the user.

4.4 Security analysis

DMS adds an additional layer of security on top of Android’s middleware. Mod-
ification to the SD card filesystem ensures the security of the external storage.
In this subsection, we discuss some of the attacks on smartphone middleware
and how DMS improves the scenario.
Assumptions. We completely trust the Android kernel and middleware. We
consider a strong adversary whose goal is to access the sensitive user data as
well as to use the device as a victimized attacker.
Over-privileged third-party apps, libraries, and sensory malware. Many
third-party apps ask unnecessary permissions to access device information which
threatens user privacy [6]. Developers also use third-party software development
kits (analytics, social networking, etc.) and ad-libraries without knowing the de-
tails of their code. Unfortunately, Android always grants a full set of permissions
to third-party libraries. Unintended accesses to users’ private data by the com-
plex and often obfuscated libraries make it hard for developers to estimate their
correct behavior [31].

Sensory malware try to use the data collected from the phone’s sensor to infer
different important information (user password, location history, etc.) [16,25,38].

DMS always maintains two zones of newly installed apps and untrusted apps.
Apps in these zones must adhere to the policies of the zones in different security
modes. As a result, asking more permissions will not yield any benefit until the
user moves the applications to the trusted zone. Sensory malware are also deemed
ineffective as DMS rejects their requests to access sensors from the Untrusted
zone.
Confused deputy and collusion attacks. In confused deputy attacks, mal-
ware leverage unprotected interfaces of benign apps. For example, a malicious
app can use the vulnerable service of a fancy SMS app by a novice developer and
send SMSs through it without having the SMS permission [15,40]. In a collusion
attack, two malicious apps are involved. Individually, their permission sets are
not malicious. However, they collude using covert or overt channels to gain a
permission set which can be used to perform unintended tasks [26, 29]. In both
the cases, DMS can be effective if such applications are sent to a zone where
IPC is restricted between apps and zones. However, users’ knowledge about the
apps is necessary in this case.
Being a victimized attacker. Internet users are often victimized by malicious
attackers. Some attackers infect and use innocent users’ devices (by making them
a part of a botnet) to launch large-scale attacks without the users’ knowledge.
Similar to the desktop computers, smart devices (Android phones, TVs, etc.)
can also be a part of such botnets and help launch large-scale low-noise attacks
(e.g., DDoS, click-fraud, spam). They often perform their malicious task when
the device is not busy (in the night). In the existing version of Android, users

can not block internet access (it is a permission with protection level normal).
However, DMS can block internet access to a zone (containing untrusted apps)
when the device is not being used (e.g., from 11PM to 7AM).

4.5 Operational overheads

In this subsection, we evaluate DMS in terms of performance and storage usage.
We also evaluate the overhead of the SD card filesystem. In each case, we show
that there is a very little to negligible overhead.

Table 3: Individual test scores from the AnTuTu benchmarking app.

Test Group
Score

Stock DMS

3D 8,640.8 8,726.2

UX 17,949.8 18,007.6

CPU 16,143.4 16,922.8

RAM 5,249.8 6,823.2

Total 47,983.8 50,479.8

Performance. We quantify performance using the popular AnTuTu bench-
marking app [4] available from Android markets. The app tests CPU and memory
performance, 2D/3D graphics, Disk I/O, Multitasking, etc. It gives a score for
each test which can be used to compare relative performance between devices.

The benchmarking app runs concurrently with the standard set of Android
apps that launched at boot. Based on the official Android source code (6.0.1),
these apps are launcher, contacts (and its provider process), photo gallery, dialer,
MMS, and settings.

All numbers from the benchmarking app are averaged over 5 runs. Table 3
shows the comparison of scores resulted from the app. The score of the stock
version is slightly lower due to the higher number of Google services running in
it compared to the DMS version. However, the score differences are not really
significant and it is clear that performance is not hampered by activating DMS.

The main runtime overhead results from the zone policy enforcement mecha-
nism. Every time Android checks for a permission, our hook in the checkPermis-
sion function of the package manager will execute the zone policy enforcer func-
tion fzpe. Here, in Figure 2, we measure the actual running time of the policy
enforcer function. For this experiment, we use a policy denying all the dangerous
permissions as a worst-case scenario. In a total of 456 calls, the average running
time was 7.91ms and the standard deviation was 5.71ms. As we understand,
the occasional spikes in the running time are the result of the high CPU usage
during that time. However, this delay will vary mode to mode as each mode
may have different policies. Overall, an 8ms delay (in the worst-case) in the
checkPermission function will not be noticeable by users.
Storage usage. We modify a few system files in the Android framework. How-
ever, this does not result in a change (in terms of size) in the final operating
system size. Also, the DMS.db database contains only textual information and

0

10

20

30

40

50

60

70

80

1 16 31 46 61 76 91 10
6

12
1

13
6

15
1

16
6

18
1

19
6

21
1

22
6

24
1

25
6

27
1

28
6

30
1

31
6

33
1

34
6

36
1

37
6

39
1

40
6

42
1

43
6

45
1

m
ill

i s
ec

on
ds

 (m
s)

Fig. 2: Running time of the DMS policy enforcer function Fzpe in milliseconds.

nowadays, most devices are equipped with 16 or more gigabytes of storage space.
Hence, DMS’s storage requirement can be fulfilled by modern smartphones.

Table 4: Overhead of the context-aware SD card filesystem.

of files
SD card fs modified SD card fs

time in seconds

10 0.11 0.18

100 1.27 1.80

1,000 8.9 15.44

SD card overhead. The socket communication between the filesystem and the
DMS native service introduces a delay in file operations. Every time an app
creates a file or tries to open a file, the filesystem connects to the native service
to acquire information about the current mode. To measure the overhead, we
execute a shell script that creates, edits, and deletes files.

We run the script a number of times (writing 10, 100, and 1,000 files) and
find that the overhead is negligible up to 100 files. No app will access more than
a few files in a real-world scenario. Table 4 shows the comparison of time resulted
from running the shell script.

5 Related Work

Researchers proposed different types of extensions to enhance the security of the
smartphone operating systems. Several papers analyzed the Android permis-
sion model [8,19,27,36,37] and identified some of its shortcomings. Their study
highlights that the permission model was coarse-grained and not very user cus-
tomizable. In response, researchers proposed different types of extensions to the
permission mechanism of Android. Most of the solutions proposed in the liter-
ature (e.g., [14, 17, 18, 28, 35]) require modification to the Android framework
and/or the underlying Linux kernel. In contrast, a number of solutions [9–11]
proposed an alternative approach that integrates security policy enforcement
into the application layer. DMS belongs to the former category.

Lange et al. [24] implemented a generic operating system framework for se-
cure smartphones called L4Android. Their framework hosts multiple virtual ma-

chines to separate secure and non-secure applications. Each VM hosts its own
version of Android. L4Android mainly focuses on the security of the sensitive
applications (e.g., financial and work-related apps). Moreover, it relies on the
hardware virtualization support, which is not yet practical for smartphones. In
contrast, DMS is designed for end users to provide a more secure phone to protect
their resources (photos taken, location history, etc.).

Conti et al. [17] proposed CRePE that can enforce fine-grained policies based
on the context of the phone. Similarly, Schreckling et al. [30] introduced a real-
time user-defined policy enforcement framework for Android. The main draw-
back of these frameworks is that they require a lot of user control for their
operation. In [33], Vecchiato et al. showed that the majority of the users ne-
glect important and basic security configurations in Android. In DMS, security
modes will be managed automatically. However, there will be options to modify
the configurations for advanced users.

Smalley et al. [32] implemented the mandatory access control (MAC) in An-
droid. They showed that the mandatory access control is able to thwart some
of the well-known malware attacks reported in the literature. DMS differs sig-
nificantly from MAC as it does not associate access control with the operating
system users (normally apps in Android). DMS changes access control policies
based on the detected security context and applies policies to a group of apps
(the zones).

Zhauniarovich et al. [39] proposed a system called Moses that supports multi-
ple security profiles on smartphones. Moses is based on the old permission model
of Android and only supports a handful of restrictions and contexts. It creates
a completely different persona for each context. DMS supports a comprehen-
sive power-efficient security context manager and enables automatic switching
to security modes. DMS uses the new permission model of Android that Google
introduced in Android Marshmallow (version 6.0). DMS ensures security and
privacy through smart restrictions without creating multiple personas. As a re-
sult, DMS is more resource efficient and users do not have to maintain separate
app profiles for each persona. Moreover, Moses is designed from a perspective
where corporates can create and manage security profiles. DMS’s security modes
are automatic and designed to protect the resources of end users.

6 Conclusion

In this paper, we present the design and implementation of Droid Mood Swing
(DMS), an automated security mode management system for smartphones. DMS
uses existing Android’s permission model to implement a more secure and usable
operating system. DMS can control application groups (called zones) through
configuration files provided by device vendors. Application zones are a way to
create app containers without any virtualization techniques which are heavy
on hardware. Security modes are activated based on the security context of the
phone to protect device resources in different use cases. DMS also implements an
intent firewall, a context-aware file system, and a permission verification system.

DMS enables users to use a single device for multiple types of tasks securely. All
operations of DMS are completely transparent to users.

Our implementation of DMS on a real device (Nexus 5) showed its effective-
ness and minimal impact on user experience. DMS automatically takes security
actions like restrict network, restrict IPC, restrict file access, and deny sending
SMSs to a phone number. The permission verification system is able to iden-
tify 85% of the suspicious apps and ask users for additional verifications. Our
security analysis proves DMS’s effectiveness against over-privileged third-party
apps and libraries. DMS is also effective against confused deputy and collusion
attacks. In the worst case, DMS’s policy checking incurs an 8ms delay and the
delay caused by the SD card filesystem is minimal.

One limitation of DMS is that device vendors control modes and security
policies which may be unacceptable by some users (for privacy reasons). In our
opinion, for the general users, it is a good compromise to ensure security. More-
over, all these modes and configurations are editable by advanced users. We
continue to work on the anonymization of the data sent from the device to
maintain user privacy.

Acknowledgment

This work is partially supported by the Natural Sciences and Engineering Re-
search Council of Canada (NSERC) and the Canada Research Chairs (CRC)
program.

References

1. Android kernel features. http://elinux.org/{Android}_Kernel_Features, ac-
cessed: 2017-08-03

2. Android permission. http://developer.android.com/reference/android/

Manifest.permission.html, accessed: 2016-08-30
3. Android permission categories. http://developer.android.com/guide/topics/

manifest/permission-element.html, accessed: 2015-11-09
4. Antutu benchmark. http://www.antutu.com/en/index.shtml, accessed: 2016-02-

09
5. Filesystem in userspace. https://en.wikipedia.org/wiki/Filesystem_in_

Userspace, accessed: 2017-03-09
6. Report: Android and iOS apps both leak private data, but one is definitely worse

for the enterprise. http://www.techrepublic.com/article/report-android-

and-ios-apps-both-leak-private-data-but-one-is-definitely-worse-for-

the-enterprise/, accessed: 2017-03-09
7. Allix, K., Bissyandé, T.F., Klein, J., Le Traon, Y.: Androzoo: Collecting millions of

android apps for the research community. In: Proceedings of the 13th International
Conference on Mining Software Repositories. pp. 468–471. ACM (2016)

8. Andriotis, P., Sasse, M.A., Stringhini, G.: Permissions snapshots: Assessing users’
adaptation to the Android runtime permission model. In: Proceedings of the Inter-
national Workshop on Information Forensics and Security (WIFS). IEEE (2016)

9. Backes, M., Bugiel, S., Hammer, C., Schranz, O., von Styp-Rekowsky, P.: Box-
ify: Full-fledged app sandboxing for stock Android. In: Proceedings of the 24th
USENIX Security Symposium. pp. 691–706. USENIX (2015)

10. Backes, M., Gerling, S., Hammer, C., Maffei, M., von Styp-Rekowsky, P.:
Appguard–enforcing user requirements on android apps. In: Tools and Algorithms
for the Construction and Analysis of Systems, pp. 543–548. Springer (2013)

11. Bianchi, A., Fratantonio, Y., Kruegel, C., Vigna, G.: Njas: Sandboxing unmodified
applications in non-rooted devices running stock Android. In: Proceedings of the
5th Annual ACM CCS Workshop on Security and Privacy in Smartphones and
Mobile Devices. pp. 27–38. ACM (2015)

12. Bogaerts, M.: Algorithm to calculate rating based on multiple reviews (us-
ing both review score and quantity). https://math.stackexchange.com/

questions/942738/algorithm-to-calculate-rating-based-on-multiple-

reviews-using-both-review-score (Sep 23 2014), accessed: 2017-09-09

13. Breiman, L.: Random forests. Journal of Machine Learning 45(1), 5–32 (2001)

14. Bugiel, S., Davi, L., Dmitrienko, A., Fischer, T., Sadeghi, A.R.: Xmandroid: A
new Android evolution to mitigate privilege escalation attacks. Technical Report
TR-2011-04, Technische Universität Darmstadt (2011)

15. Bugiel, S., Davi, L., Dmitrienko, A., Fischer, T., Sadeghi, A.R., Shastry, B.: To-
wards taming privilege-escalation attacks on Android. In: Proceedings of the Net-
work and Distributed System Security Symposium (NDSS). The Internet Security
(2012)

16. Cai, L., Chen, H.: Touchlogger: Inferring keystrokes on touch screen from smart-
phone motion. Hot topics in security (HotSec) 11, 9–9 (2011)

17. Conti, M., Nguyen, V.T.N., Crispo, B.: Crepe: Context-related policy enforcement
for Android. In: Information Security, pp. 331–345. Springer (2011)

18. Enck, W., Gilbert, P., Chun, B.G., Cox, L.P., Jung, J., McDaniel, P., Sheth, A.N.:
Taintdroid: An information-flow tracking system for realtime privacy monitoring
on smartphones. In: Proceedings of the 9th USENIX Conference on Operating
Systems Design and Implementation. pp. 393–407. USENIX Association (2010)

19. Felt, A.P., Chin, E., Hanna, S., Song, D., Wagner, D.: Android permissions demys-
tified. In: Proceedings of the 18th ACM Conference on Computer and Communi-
cations Security. pp. 627–638. ACM (2011)

20. Gorla, A., Tavecchia, I., Gross, F., Zeller, A.: Checking app behavior against app
descriptions. In: Proceedings of the 36th International Conference on Software
Engineering. pp. 1025–1035. ACM (2014)

21. Iqbal, M.S., Zulkernine, M.: Sam: A secure anti-malware framework for smartphone
operating systems. In: Proceedings of the IEEE Wireless Communications and
Networking Conference (WCNC 2016). pp. 1–6. IEEE (2016)

22. Iqbal, M.S., Zulkernine, M.: Zonedroid: Control your droid through application
zoning. In: Proceedings of the 11th International Conference on Malicious and
Unwanted Software (MALCON). pp. 113–120. IEEE (2016)

23. Iqbal, M.S., Zulkernine, M.: Flamingo: A framework for smartphone security con-
text management. In: Proceedings of the 32nd ACM Symposium on Applied Com-
puting (ACM SAC). pp. 563–568. ACM (2017)

24. Lange, M., Liebergeld, S., Lackorzynski, A., Warg, A., Peter, M.: L4Android: a
generic operating system framework for secure smartphones. In: Proceedings of the
1st ACM Workshop on Security and Privacy in Smartphones and Mobile Devices.
pp. 39–50. ACM (2011)

25. Lin, C.C., Li, H., Zhou, X.y., Wang, X.: Screenmilker: How to milk your Android
screen for secrets. In: Proceedings of the Network and Distributed System Security
Symposium (NDSS) (2014)

26. Marforio, C., Ritzdorf, H., Francillon, A., Capkun, S.: Analysis of the communica-
tion between colluding applications on modern smartphones. In: Proceedings of the
28th Annual Computer Security Applications Conference. pp. 51–60. ACM (2012)

27. Nauman, M., Khan, S., Zhang, X.: Apex: extending Android permission model
and enforcement with user-defined runtime constraints. In: Proceedings of the 5th
ACM Symposium on Information, Computer and Communications Security. pp.
328–332. ACM (2010)

28. Russello, G., Conti, M., Crispo, B., Fernandes, E.: Moses: supporting operation
modes on smartphones. In: Proceedings of the 17th ACM Symposium on Access
Control Models and Technologies. pp. 3–12. ACM (2012)

29. Schlegel, R., Zhang, K., Zhou, X.y., Intwala, M., Kapadia, A., Wang, X.: Sound-
comber: a stealthy and context-aware sound trojan for smartphones. In: Proceed-
ings of the Network and Distributed System Security Symposium (NDSS). vol. 11,
pp. 17–33 (2011)

30. Schreckling, D., Köstler, J., Schaff, M.: Kynoid: real-time enforcement of fine-
grained, user-defined, and data-centric security policies for Android. in Information
Security Technical Report 17(3), 71–80 (2013)

31. Seo, J., Kim, D., Cho, D., Kim, T., Shin, I.: Flexdroid: Enforcing in-app privilege
separation in android. In: Proceedings of the Network and Distributed System
Security Symposium (NDSS). pp. 1–53 (2016)

32. Smalley, S., Craig, R.: Security enhanced (se) Android: Bringing flexible mac to
Android. In: Proceedings of the 20th Annual Network and Distributed System
Security (NDSS) Symposium. vol. 310, pp. 20–38 (2013)

33. Vecchiato, D., Vieira, M., Martins, E.: Risk assessment of user-defined security
configurations for Android devices. In: 27th International Symposium on Software
Reliability Engineering (ISSRE). pp. 467–477. IEEE (2016)

34. VirusTotal: Virustotal is a free service that analyzes suspicious files and urls and
facilitates the quick detection of viruses, worms, trojans, and all kinds of malware.
https://www.virustotal.com/ (2017), accessed: 2017-08-03

35. Wang, X., Sun, K., Wang, Y., Jing, J.: Deepdroid: Dynamically enforcing enter-
prise policy on Android devices. In: Proceedings of the 22nd Annual Network and
Distributed System Security Symposium (NDSS’15) (2015)

36. Wei, X., Valler, N.C., Madhyastha, H.V., Neamtiu, I., Faloutsos, M.: Characterizing
the behavior of handheld devices and its implications. Computer Networks (2017)

37. Xu, W., Zhang, F., Zhu, S.: Permlyzer: Analyzing permission usage in android
applications. In: Proceedings of the 24th International Symposium on Software
Reliability Engineering (ISSRE). pp. 400–410. IEEE (2013)

38. Xu, Z., Bai, K., Zhu, S.: Taplogger: Inferring user inputs on smartphone touch-
screens using on-board motion sensors. In: Proceedings of the 5th ACM conference
on Security and Privacy in Wireless and Mobile Networks. pp. 113–124. ACM
(2012)

39. Zhauniarovich, Y., Russello, G., Conti, M., Crispo, B., Fernandes, E.: Moses: sup-
porting and enforcing security profiles on smartphones. IEEE Transactions on De-
pendable and Secure Computing 11(3), 211–223 (2014)

40. Zhou, Y., Jiang, X.: Dissecting Android malware: Characterization and evolution.
In: Proceedings of the IEEE Symposium on Security and Privacy (SP). pp. 95–109.
IEEE (2012)

