
FCFraud: Fighting Click-Fraud from the User Side

Md Shahrear Iqbal∗, Mohammad Zulkernine∗, Fehmi Jaafar∗, Yuan Gu†
∗Queen’s University, Kingston, Ontario, Canada

{iqbal,mzulker,jaafar}@cs.queensu.ca
†Irdeto Canada, Kanata, Ontario, Canada

yuan.gu@irdeto.com

Abstract—Pay-Per-Click (PPC) ad networks charge advertis-
ers for every click on their ads. Click-fraud happens when a
user or an automated software clicks on an ad with a malicious
intent and advertisers need to pay for those valueless clicks.
Click-fraud has been proved to be a serious problem for the
online advertisement industry. Although it has attracted much
attention from the security community, the direct victims of
click-fraud, the advertisers, still lack confidence in the click-
fraud detection techniques. Among many forms of click-fraud,
botnets with the automated clickers are the most severe ones.
In this paper, we present a technique for detecting automated
clickers from the user side. Normal internet users are victimized
by malicious attackers (e.g., bot-master of a botnet) and the
attackers infect and use their machines to defraud advertisers.
We propose a technique to Fight Click-Fraud, FCFraud, which
can be integrated into the operating system. Since most modern
operating systems already provide some kind of anti-malware
service, our proposed technique can be implemented with a
negligible overhead. We believe that an effective protection at
the operating system level can save billions of dollars of the
advertisers. Experiments show that FCFraud is 99.6% accurate
in classifying ad requests from all user processes and it is 100%
successful in finding the fraudulent processes.

Keywords—Online advertising, click-fraud, malware detection.

I. INTRODUCTION

Online advertising is a form of marketing which uses
websites to deliver promotional messages to consumers. It
includes email marketing, search engine marketing (SEM),
social media marketing, many types of display advertising, and
mobile advertising. It is the main financial incentive for free
web contents and services as well as free mobile apps. The
online advertising industry has expanded rapidly and grown
into a $121 billion industry with revenue projected to reach
$161 billion by 2016 [1]. The largest revenue shares within
internet advertising are generated by display-based and search-
based advertising.

Advertisers and publishers use a wide range of revenue
models. Among all the models, Pay-Per-Click (PPC) is the
dominant one. In PPC, advertisers pay each time a user clicks
on an ad. The biggest threat to the PPC advertisement is click-
fraud. Click-fraud is the practice of deceptively clicking on
online ads with the intention of either increasing third party
website revenues or exhausting an advertiser’s budget.

Ad networks mostly use server-based techniques to detect
advertising frauds as they do not have enough control over
the client machines. They gather information from different
sources about the user, the machine and the behavior of the
user. Then, they apply machine learning or pattern recognition
techniques to identify suspicious clicks.

The most severe attacks are the attacks by the botnets
which are used extensively in recent years to launch large-scale
attacks. A botnet is a network of malware-infected machines
that are controlled by a bot-master. The users of such machines
are normally unaware of the fact that their machines are being
compromised and used by the attackers. FCFraud particularly
protects this group of users from being exploited.

This paper proposes a technique, FCFraud, which can be
incorporated as a part of an operating system’s anti-malware
service. FCFraud inspects the HTTP packets from all the user
processes along with the real events from the hardware mouse
devices. It detects the fraudulent processes in user machines
that programmatically click on ads silently while executing in
the background. It is impossible for the fraudulent processes
to generate real mouse clicks. These processes either make a
new HTTP request to simulate a click on an ad or generate
software simulated clicks which are distinguishable from real
mouse clicks. In summary, in this paper, we make the following
contributions:

• We take the first step to propose a click-fraud pre-
vention technique, FCFraud, on the user side which
can be a valuable addition to the server-side detection
techniques.

• We propose to add FCFraud as a part of an operating
system’s anti-malware service.

• We experimented using 25 popular websites (a total
of 7,708 HTTP requests) to examine the effectiveness
of FCFraud.

The remainder of the paper is organized as follows. Section II
describes click-fraud and details about automated clickers.
Section III relates our study with the previous work. Section IV
presents our click-fraud prevention technique and Section V
describes the experimental evaluation results. Section VI dis-
cusses FCFraud’s effectiveness, limitations and a number of
future directions. Finally, we conclude in Section VII.

II. BACKGROUND

In this section, we first explain how the online advertising
works. Then, we present a brief discussion on the click-fraud
along with an example of the botnet click-fraud.

A. Click-fraud

Click-fraud occurs when illegitimate sources click on on-
line ads with a malicious intent. Such clicks are often called
“invalid clicks”. Invalid clicks are any clicks that an ad network
chooses not to charge for. When clicks are marked invalid,

the user agent that issued the click is still directed to an
advertiser’s website. Since the intent is only inside the mind
of the person issuing the click or inside the mind of the author
of the software that issues clicks, it is difficult to know with
certainty whether a click is fraudulent. Detecting all invalid
clicks is not trivial due to the server-based detection techniques
used by the ad networks. In fact, about 36% of all web traffic
is considered fake according to the estimates cited by the
Interactive Advertising Bureau trade group [2]. A study of the
digital security firm White Ops and the Association of National
Advertisers, estimates that advertisers will lose $6.3 billion in
2015 due to click-frauds [3].

B. Automated clickers

Clickbots are special software that can click on online
ads automatically. Today’s clickbots are very sophisticated and
often equipped with the capabilities of a real browser. They
crawl to different websites and click on links provided by their
users or bot-masters. Some of them can imitate real human
browsing behaviors and mouse movements.

A clickbot in a botnet performs some common functions
including initiating HTTP requests to a webserver, following
redirections, and retrieving contents from a web server under
the control of a remote bot-master. A bot-master can leverage
millions of clickbots to perform automatic and large-scale
click-fraud attacks. The following description illustrates how
a victim host conducts click-fraud under the command of
a bot-master. First, the bot-master uses internet to distribute
malware to the victim host. Then, the victim host becomes
a bot and receives instructions from a command-and-control
(C&C) server controlled by the bot-master. Such instructions
may specify the target website, the number of clicks to perform
on the website, the referer to be used in the fabricated HTTP
requests, what kinds of ads to click on, and when or how often
to click [4]. After receiving instructions, the clickbot begins
traversing the designated publisher website and simulates a
click on each selected ads. The ad network logs the click
traffic and then returns a HTTP 302 redirect response to the
advertiser’s page. Every time an ad is clicked by a clickbot, the
advertiser pays the ad network if it is not detected as “invalid”
and the involved publisher receives a portion of the revenue
from the ad network.

III. RELATED WORK

Over the last decade, researchers from big companies like
Google and Yahoo are investigating the problem of click-
fraud [5], [6]. Since advertising revenue is one of the major
sources of income of these companies and many independent
publishers, click-fraud became a major threat to the survival
of free contents on the web [7]. Advertisers also have a
strong interest to combat all sorts of advertising frauds that
are draining their money. In this section, we will discuss the
most pertinent literature about click-fraud detection.

Metwally et al. [8] presented three forms of click-fraud and
the methods to detect them. They found that several websites
can cooperate with each other to create fraudulent clicks and
thus advance their commercial interests. They developed an
algorithm, called streaming-rules, to detect fraud in advertising
networks. Immorlica et al. [9] studied fraudulent clicks and

presented a click-fraud resistant method for learning the click
through rate of advertisements. Haddadi [10] suggested that
advertisers can use bluff ads to detect fraudulent clicks on their
ads. While bluff ads may be effective in detecting click-fraud,
advertisers have to spend extra money on those bluff ads. Also,
for the publishers, it is not good to show meaningless ads to the
real users. Dave et al. [11] presented an approach for catching
click spam from an ad network’s perspective. It is designed
based on an invariant that click-spam is a business (for click-
spammers) that needs to deliver high return on investment
(ROI) to offset the risk of getting caught.

Schulte et al. [12] detected malware using program interac-
tive challenge (PIC) mechanism. However, in their approach,
an intermediate proxy has to be introduced to examine all the
HTTP traffic between a client and a server. Similarly, Jang et
al. [13] proposed a framework to match user intents with the
network traffic. Using the framework, they tried to distinguish
between human and malware generated traffic. They also used
a proxy machine to monitor network traffic. This is technically
difficult to implement in real environments and we address
the problem by implementing our approach as a part of the
operating system. Xu et al. [14] proposed a new approach for
advertisers to independently detect click-fraud activities issued
by clickbots and human clickers. Their proposed detection sys-
tem performs two main tasks of proactive functionality testing
and passive browsing behavior examination. The purpose of
the first task is to detect clickbots. It requires a client to actively
prove its authenticity of a full-fledged browser by executing
a piece of JavaScript code. For more sophisticated clickbots
and human clickers, the system observes user behavior on the
advertised site.

The most closely related work to FCFraud is that of
Crussell et al. [15]. They analyzed Android malware apps
to investigate ad-related frauds. They used a total of 165,426
Android apps and executed them in an emulator without any
user inputs. They collected the network packets generated
by each app to extract ad requests and ad clicks from the
traffic. They created HTTP request trees from the collected
packets and used machine learning to automatically identify ad
requests. They achieved an overall class-weighted accuracy of
85.9% in classifying ad requests from all the captured network
traffic. Finally, they reported a number of ad-related frauds
in Android apps. In our work, we use the concept of HTTP
request trees for detecting ad requests. However, our proposed
technique, FCFraud, executes in the user operating systems to
prevent click-fraud.

To summarize, in the field of click-fraud, most research
focuses on the detection from the server-side. Publishers, ad
networks or the advertisers use global advertising web traffic
and their own proprietary technology to detect fraudulent
clicks [16]–[18]. In our understanding, click-fraud is a user
side behavior. Therefore, our approach focuses to detect click-
fraud on the user side.

IV. THE CLICK-FRAUD PREVENTION TECHNIQUE

This section describes the steps of FCFraud. To prevent
click-fraud, FCFraud tries to detect programs that run in the
background, implement browser functionalities and perform
click-fraud stealthily.

FCFraud in the compromised user machine

Victim host

Botmaster Collected
information from

HTTP packets

Collected
information from

mouse events

Extract HTTP
information per

process

Extract mouse
event information

per process

Fraudulent
processes

Non-
fraudulent
processes

Generate
features

Classify the
HTTP requests

Identify ad
clicks in the

HTTP request
tree

no hardware mouse
click found

receive real
mouse clicks

Create HTTP
request trees
per process

Fig. 1: A user side approach for preventing click-fraud.

As shown in Figure 1, FCFraud first extracts HTTP packet
and mouse event information per process and creates HTTP
request trees for each process. It then generates features from
the request trees and classifies the HTTP packets to identify
ad requests. Next, it identifies ad clicks in the request trees.
We mark a process fraudulent if it does not generate real
mouse clicks, however, its tree contains ad requests and clicks.
Processes that interact with a real user and receive hardware
mouse clicks are marked non-fraudulent. In a nutshell, the
steps are shown in Figure 2. We describe each step of the
technique in the following subsections.

while Machine is ON do
-Capture HTTP Packets
-Capture input events
-Apply easylist ad-block filter on the HTTP requests
-Identify processes associated with ad-related traffic
for each Processes with ad-related traffic do

-Create HTTP request trees
-Generate features and classify the HTTP requests
-Identify ad clicks in the HTTP request trees

end for
-Detect and block the fraudulent processes

end while

Fig. 2: Click-fraud prevention algorithm

A. Collect information from the HTTP requests

In Figure 3, we demonstrate how FCFraud collects infor-
mation from each running process. FCFraud uses the libp-
cap [19] packet capture library to capture HTTP packets from
the network interface. At the time of capturing, it looks into the
“/proc” file system to find out the process which is currently
using the source port.

For each process, FCFraud records different fields from
the HTTP request and response. To find the response of a
request, it matches the source port of the request with the
destination port of the response and vice versa. From the
request, it extracts header fields like timestamp, source ip,
source port, destination ip, destination port, referer as well as
the host and request URI (uniform resource identifier). From

the response, it records location, content type, content length,
content encoding, HTTP version, status code, and reason
phrase. FCFraud saves all these information in an SQLite
database for later steps. In this step, it neither inspects the
body of the requests nor it saves the packets as it may require
gigabytes of storage space.

EasyList ad blocking filter. EasyList [20] is a popular ad block
filter maintained by the online community and used in ad
blocking add-ons of web browsers. It can filter ad-related
contents via URL filters, DOM element filters, and third-
party advertisement domain filters. FCFraud uses a version
of EasyList that contains a total of 45,423 rules. After saving
HTTP packet information, FCFraud checks each of the URL
against all these rules and saves the decision in the database.
This boolean information is used as a primary filter to detect
processes with ad-related internet traffic. It is also used as a
feature in the ad request classifier later on. Figure 3 presents
the steps described in Section IV-A.

B. Record real mouse events

FCFraud records the timestamp of each mouse event re-
ceived by a process. It records events from hardware mouse de-
vices only (listens inputs from hardware ports). To accomplish
this, it executes separate user-level threads for each mouse
device present in the system while capturing HTTP packets.
At the time of recording, it determines the top window id of
the x-window system and find all the process ids associated
with the window. It saves this information as “event|pid1, pid2,
pid3, ...|time” in the database. This information is required to
identify processes that execute in the background (no visible
windows) and do not generate any real mouse clicks.

C. Create the HTTP request trees

HTTP requests of the processes can be grouped logically
together. For example, a browser loading a web page may
fetch many other static resources, such as CSS, JavaScript or
images, to embed in the HTML. In this case, we can group the
HTTP requests using the HTTP referrer header to form a tree
of requests where the request to the HTML page is the root
and the requests to the static resources are the children. If we
can construct a tree that represents the exact scenario of the

Linux
File

System

SQLite DB

EasyList filter

Blocked by
Ad Blocker?

HTTP
Request Timestamp Source ip Source port Destination ip Destination port Referer Host URI

HTTP
Response

Timestamp Source ip Source port Destination
ip

Destination
port Location Content type Content

encoding

Content
length

HTTP
version Status code Reason

phrase

Process
name

/proc

Fig. 3: Capturing HTTP packets and extracting information per process.

browsing, then it will be easier to analyze and automatically
detect ad clicks.

We represent each HTTP request and its corresponding
response as a single node in the request tree and connect two
nodes if:

1) The latter node contains the request referer field set to
the host of the former node. We consider the former
node as the parent of the latter and mark the edge as
“REFERER”.

2) The former node contains the location header along
with a redirection status code to redirect the client to
the latter node. We consider the former node as the
parent of the redirected node and mark the edge as
“LOCATION”.

3) The latter node contains the client id of the former
node in its URL. We consider the former node as
the parent node of the latter and mark the edge as
“CLIENTID”. In this case, we use the unique client
id of a publisher which is assigned by the ad network
at the time of registration.

Each process may have multiple trees associated with them.
We show an example of HTTP request trees of a process
connecting two hosts in Figure 4. The edges are marked as
”REFERER” and ”LOCATION” based on the above-described
rules.

D. Generate features and classify the HTTP requests

To detect ad clicks, we must first identify ad requests in
the HTTP request trees. There are many kinds of ad providers
in the web space and it is very difficult to identify all kinds of
ad requests by some hard-coded rules. FCFraud uses machine
learning classification to automatically identify ad requests.
The results of machine learning algorithms are often much
more accurate than human-crafted rules. Also, in this context,
the formats of the web advertising links are not standardized

and they may change over time. Therefore, machine learning
enables us to retrain the classifiers automatically.

Web ad requests have some common characteristics. For
example, they normally have a large number of query param-
eters and their responses are normally images or JavaScript
contents. FCFraud extracts features from the query parameters,
the HTTP headers (both the request and the response), and
the constructed HTTP request trees. To make the classification
more accurate, it also uses the decision of the EasyList filter as
described in Section IV-A. We use WEKA machine learning
library [21] to classify HTTP requests.

We classify the URLs into two classes, ad-related and not
ad-related. Ad-related URLs are requests to serve ads to an ad
network and not ad-related URLs are all other requests.

1) Features

To make the classifier effective, we try to find unique features
that may help greatly to differentiate an ad-related URL from
a non ad-related URL. These include characteristics of the
structure of the URL, other URLs present in the URL, and
different page properties. All features are either binary or
integer and given equal weight at the training time. Below
is a summary of the key feature categories we use to train the
classifier.

Features from the HTTP packet headers. The features in this
set are from the inspected HTTP packet headers. This set
includes destination ip, content type, content length, status
code, location URL, etc. From the location URL, we calculate
the number of subdomains in the link and its length. We also
create features from the host name and the request URI. Some
examples are the length, the number of subdomains, whether
a referer is present or not, and if present, the length and the
number of subdomains in the referer.

Features from the query parameters. Query parameters are
very important in our case. A typical ad-related HTTP request
contains a large number of query parameters. These parameters

Ad request

LOCATION

REFERER
REFERER

REFERER

REFERERREFERER

REFERER
REFERER

REFERER

REFERER

REFERER

REFERER

REFERER

REFERER

www.hosta.com

hosta.com/
…a.js

hosta.com
/…b.jpg www.adserver.com/….

advertiser.com/
….c.js

advertiser.com/
…d.png

advertiser.com/index.html

Process 1

www.hostb.com

www.adserver.com/...

hostb.com/
…a.js

hostb.com
/…b.jpg

advertiser.com
/….g.js

advertiser.com/
…h.png

advertiser.com/index.html

adserver.com
/…e.js

adserver.com
/…f.jpg

Ad
request

Ad
request

Ad
request

Ad click

Ad click

Fig. 4: An example of HTTP request trees of a process. We encircle the ad click and ad request nodes.

send many information about the particular client machine and
the browser to find a matching ad for the request. The number
of query parameters, the average length of the parameters, etc.
are examples of features from this set.

Features from the HTTP request trees. FCFraud constructs the
request trees to recreate the browsing scenario. From this set,
we select features like the height of the subtree rooted at each
node, the number of blocked URLs in the subtree, the number
of images and JavaScript requests in the subtree, the number
of different domains in the subtree, etc.

2) Metrics for evaluating the classifiers

We use five classification algorithms to classify our data,
namely, Naive Bayes, Support Vector Machines (SVM), K-
Nearest Neighbors, C4.5 [22], and Random Forest [23]. We
use WEKA’s default configuration for the five classifiers. We
will compare their performance in Section V. Here, for all
the classifiers, the output is either “ad” or “notad” for every
input instance. To evaluate the average classification accuracy
of each classifier, we use the k-fold cross validation (CV) with
k=3. By using the k-fold CV, we ensure that the classifier is
trained on every example. In comparing the effectiveness of
the classifiers, we look at the average accuracy of the testing
data as well as the precision and the false positive rate. The
formulas for calculating the precision and the false positive
rate are given below:

precision =
true positives

true positives + false positives

false positive rate =
false positives

false positives + true negatives

In our case, we like to minimize the false positive rate and
maximize the accuracy of the “ad” class.

E. Identify ad clicks in the HTTP request trees

When a user clicks on an ad, the browser generates a HTTP
request to the ad network, the ad network records the event
and then redirects the browser to the advertiser’s page. The
address of the advertiser’s page is typically provided in the
location header of the response. Therefore, in our request trees,
we mark a node as ad click if it is a child of an ad request, the
edge is marked as “LOCATION” and it is the root of a subtree
whose nodes represent a separate website. When there is no
location header, we consider nodes that are roots of subtrees
representing separate website visits. If the root of such a node
contains a pre-specified number of ad request nodes in its tree,
then it is likely an ad click. In this case, we assume that the root
contains a number of ads and the subtree is formed because of
the user clicks on one of the ads. In our experiment, we find
that these nodes normally use the former pages as referer.

We present both the scenarios in Figure 4. The browser
process “Process 1” goes to www.hosta.com which con-
tains an ad (the ad request node). The user clicks on
the ad and visits advertiser.com/index.html. Here,
these two nodes are connected by a “LOCATION” edge
and the advertiser’s page is a different website (not in
the www.hosta.com domain). As a result, we mark the
advertiser node as “ad click”. In the second scenario,
www.hostb.com contains a number of advertises in the page
and the node advertiser.com/index.html represents
a different website visit. It is also marked as “ad click”.

Finally, we execute a filter to remove false-positives from
the result. Websites load contents from different domains and
that node in the HTTP request tree can be falsely detected
as an ad click. We also observe that many requests to the
ad networks, web analytics, and web tracking sites generate
further communications with them and those later requests use
the first one as the referer, which are also falsely detected as
ad clicks. Additionally, we notice that some of the requests

Classification Algorithm Avg. Accuracy (%) Precision (%) FP Rate (%)
NaiveBayes 92.46 59.05 7.48
SVM 96.85 100 0
C4.5 99.27 95.09 0.59
2kNN 99.27 95.64 0.52
5kNN 99.29 95.64 0.52
RandomForest 99.57 97.43 0.30

TABLE I: Performance of different machine learning classifiers to classify ad requests over 3-fold cross-validation.

are made to static resources, such as CSS files which can be
removed from the list without hampering the performance of
the ad click detection.

F. Detect and block the fraudulent processes

To detect ad fraud, FCFraud analyzes the HTTP request
trees and the collected mouse events. If a process clicks on
an ad using a software simulated click or an independent
HTTP request (without a mouse click) while executing in the
background, then FCFraud marks the process as fraudulent.
It uses the mouse event database to determine whether this
particular process generated any real mouse clicks (i.e., a real
user interacts with it). If FCFraud identifies any fraudulent
process, it notifies the user and blocks the process from
accessing the network.

V. EXPERIMENTAL EVALUATION

In this section, we first describe how we execute FCFraud
in our setup. Then, we create a ground truth dataset by
visiting a number of websites. We use 3-fold cross-validation
to compare the performance of the five classifiers. Here, we
choose the best classifier to be used in FCFraud. After that, we
execute FCFraud to detect fraudulent processes in the machine.
Finally, we observe the effectiveness of FCFraud based on how
many clickbots it detects.

A. Execution of FCFraud

In our experiment, FCFraud executes as a daemon service
with root privileges. It inspects HTTP requests and saves nec-
essary information along with the mouse events in a database.
Then, FCFraud analyzes the requests and alarms the user
periodically. In our case, it took 229.336 seconds to analyze
the inspected HTTP requests (around 4.3MB of captured
information) in a Pentium Core i7-4770 3.4GHz machine with
16GB of RAM and Ubuntu 14.04 64-bit operating system.
Notably, the database contains only textual information and
the operating system can easily send it to the cloud for the
analysis if the user machine is not powerful.

B. Visited websites

We select 25 websites containing advertisements for our
experiment. We try to pick the most popular categories (from
www.alexa.com) of websites such as articles, auto, weblog,
computer games, science, technology, travel, and weather.

C. Click bots

We use three kinds of bots to generate the fraudulent traffic.
Two of them use browser drivers to control Google chrome and
PhantomJS [24]. Browser drivers or web drivers are application
programming interfaces (API) that can communicate with a
browser and perform all the user interactions programmati-
cally. In our experiment, we use Selenium WebDriver [25].
Google chrome creates a visible window and thus noticeable
by the user. As a result, in case of Google chrome, we make
the window hidden. PhantomJS is a headless browser and does
not create any human viewable window. The third bot is an
independent program, which generates HTTP traffic and parses
the response. We use a web browser control to implement the
feature. We execute the bots both sequentially and concurrently
to examine the effectiveness of FCFraud.

In the three bots, we supply website addresses and XPaths
of the web elements containing the ads. XPath is a query
language for selecting nodes in an XML document. The bots
first visit the websites given to them and generate clicks on the
web elements containing the ads which redirect the browser to
the advertisers’ pages. Occasionally, the bots generate multiple
clicks on the same page if multiple XPaths are supplied to
them.

D. Ground truth for the ad request classifiers

To build the ground truth dataset for identifying ad re-
quests, we visit all the websites using the Firefox web browser
and inspect the ad elements by using the Firebug extension.
We manually classify 809 ad requests from the 7,708 HTTP
requests generated by the clickbots and the Firefox browser.
We do not classify the tracking and conversion requests to the
ad networks and advertisers as they are not requests for serving
ads. The total number of ad-related domains in the dataset is
13.

E. Identifying the ad requests

After we build the training dataset, we use the selected clas-
sifiers to classify the HTTP requests. The classifiers classify
a request as either “ad” or “notad”. We consider the instances
from the class “ad” as positive.

Table I shows the comparison of the average accuracy, the
precision and the false positive rate of the various classifiers.
In our experiment, RandomForest has the highest average
accuracy and precision of 99.57% and 97.43%. It also has
the lowest false positive rate of 0.30%. Though the average
accuracy, the precision and the false positive rate of the SVM
algorithm is promising, it has a poor recall value of only
69.96% as shown in Figure 5. RandomForest produces the

highest recall value of 98.51%. However, in our view, all
the algorithms show satisfactory results. We believe that the
acceptable performance of the classification algorithms comes
from the choice of the features and the use of the decision
of an ad blocking filter. In conclusion, we decide to use
RandomForest as the classification algorithm in FCFraud.

tp tn fp fn Classifier Avg. Accura
744 6383 516 65 809 Naïve Bayes 92.4624
566 6899 0 243 809 SVM 96.8474
794 6858 41 15 809 C4.5 99.2735
789 6863 36 20 809 2kNN 99.2735
790 6863 36 19 809 5kNN 99.2865
797 6878 21 12 809 Random Forest 99.5719

0

20

40

60

80

100

120

Naïve Bayes SVM C4.5 2kNN 5kNN Random Forest

Recall (%)

91.47
98.5197.6597.5298.14

69.96

Fig. 5: Accuracy of the positive class (recall) of different
classifiers.

Table II presents the confusion matrix of the RandomForest
classifier. We discussed in the related work section that this
step of FCFraud uses the concept of HTTP request trees
from [15]. Nevertheless, we are unable to quantifiably compare
our classification results with their results. Their dataset is for
Android apps and ad request formats in mobile platforms are
different. Also, we have a number of different heuristics to
build the HTTP request trees so that they resemble more to
the desktop browsing environment.

NOTAD AD Recall
NOTAD 6878 21 99.7%

AD 12 797 98.5%
Precision 99.8% 97.4%

TABLE II: Confusion matrix of our RandomForest classifier,
computed using 3-fold cross validation. The accuracy is

99.6%.

F. Detecting ad clicks in request trees

Detecting ad clicks is the trickiest part of our technique. In
Figure 6, we report the results of the detection. It detects 24
ad clicks among a total of 28. It could not detect 4 ad clicks
because those requests do not contain a referer or location
header in the corresponding HTTP packets. Those clicks are
likely generated by a dynamic JavaScript code with the referer
or the location header hidden in different URL parameters.
Here, FCFraud reports a total of 19 false positives. However,
in this step, the most important thing is to detect real ad clicks.
False positives do not impact the detection of background
fraudulent processes. The recall and the precision of the ad
click detection are 85.71% and 55.8%.

G. Detecting and blocking fraudulent processes

FCFraud successfully detects all the three clickbots as
fraudulent. We find that all the ad clicks are detected as
fraudulent in the request trees generated by the clickbots. After

the detection, FCFraud notifies about the incident and blocks
the fraudulent processes from accessing the network. Without
network access, the processes become ineffective for the attack
as they cannot communicate with the bot-master. Also, it does
not make any difference whether we run the bots concurrently
or sequentially. In both the cases, FCFraud performs equally.

of actual click 28
of detected click 24
of false negative 4
of false positive 19

0

5

10

15

20

25

30

of actual click # of detected
click

of false
negative

of false positive

Fig. 6: Evaluation result for the detection of ad clicks.

VI. DISCUSSION

In this section, we discuss various issues of the click-fraud
problem, our approach, our limitations, and probable future
directions.

A. Effectiveness of FCFraud against click-fraud

We primarily design FCFraud to thwart processes which are
part of a large click-fraud network. These processes perform
several types of advertising frauds. For example, some of
them manipulate search engine results by constantly searching
bot-master provided keywords and click on results. Some of
them browse affiliate web sites and click on advertisements.
FCFraud successfully blocks all those processes and thus
shrinking the size of the botnet.

Another issue is the timing of the click-fraud attack. Many
of the malware tries to generate fraudulent clicks when the
computer is being actively used by a user. It is not an issue
for FCFruad. It will detect the malware whether it executes
the attack in a busy time period or not. Some malware create
multiple processes and frequently change their executables. In
both the cases, FCFraud can block them as it traces the file path
of the parent process that spawned all those children. FCFraud
blocks the process using its physical file path. As a result, it
will block the malware even if the executable changes.

FCFraud will also work in case a user has a touchscreen
monitor. Touch screens generate events similar to the mouse
events discussed in the paper and can be captured using the
same technique.

B. Applicability of FCFraud in mobile devices

Since mobile advertising is on the rise, it is high time
to enhance the mobile operating systems with anti-malware
capabilities. We are now actively working to port our solution
to the mobile environment. We are experimenting with the
Android operating system that uses a modified Linux kernel.
We find that capturing touch events and HTTP requests require
a little modification. Another advantage of the mobile devices

is that they allow only one process to be in the foreground,
which eases the task of associating touch events with pro-
cesses. We are confident that FCFraud will be equally effective
in the mobile operating systems. Also, as mentioned before,
the analysis can be done in the cloud to save mobile devices’
battery life.

C. Limitations and Future work

One of the major limitations in FCFraud is the inability
to detect complex JavaScript and encrypted requests which
is almost impossible to detect at the operating system level
without the help of the browser. One future direction of the
research is to instrument the user processes so that they can
communicate with the operating system and thus improving
the detection rate drastically.

Another limitation is the number of false-positives in the
ad click detection process. Nowadays, ad URLs are constantly
changing their structure to combat ad blockers. That is why
we are developing a method to periodically train the classifier
on new data.

Lastly, our approach can be effective against other large-
scale botnet attacks such as distributed denial of service
(DDoS) and email spamming.

VII. CONCLUSION

Nowadays, online advertising is a common form of busi-
ness marketing and one of the reasons of the availability of
free web contents. It is expanding rapidly in the advent of
smart televisions and online content delivery services. As a
result, fraudsters are also targeting the industry to drain money
from the advertisers. One of the major threats for the online
advertising industry is the click-fraud.

Sometimes a victim user’s machine unknowingly becomes
a part of a larger click-fraud network by downloading or
getting infected by a malware. In this paper, we develop a tech-
nique, FCFraud, that protects innocent users by detecting the
fraudulent processes that perform click-fraud silently. FCFraud
executes as a part of the operating system’s anti-malware
service. It inspects and analyzes web requests and mouse
events from all the user processes and applies RandomForest
algorithm to automatically classify the ad requests. After that,
it detects fraudulent ad clicks using a number of heuristics. In
our experimental evaluation, FCFraud successfully detects all
the processes running in the background and performing click-
fraud. It blocks them from further accessing the network thus
removing the machine from the botnet. Most major operating
system vendors own or operate ad networks and advertising is
one of their major sources of income. As a result, we believe
that adding FCFraud to the operating system’s anti-malware
service can greatly serve the interests of the operating system
vendors and online advertisers and it can be a valuable addition
to the server-based detection techniques.

ACKNOWLEDGMENT

This work is partially supported by Mitacs Canada and
Irdeto Canada.

REFERENCES

[1] “Internet ad spend to reach $121b in 2014, 23% of $537b total ad
spend,” http://techcrunch.com/2014/04/07/internet-ad-spend-to-reach-
121b-in-2014-23-of-537b-total-ad-spend-ad-tech-gives-display-a-
boost-over-search/, accessed: 2015-02-18.

[2] “A ‘crisis’ in online ads: One-third of traffic is bogus,” http://www.wsj.
com/articles/SB10001424052702304026304579453253860786362, ac-
cessed: 2015-01-09.

[3] “Fraud from bots represents a loss of $6 billion in digital
advertising,” http://www.reuters.com/article/2014/12/09/us-advertising-
fraud-study-idUSKBN0JN0AW20141209, accessed: 2015-02-06.

[4] N. Daswani and M. Stoppelman, “The anatomy of clickbot. a,” in
Proceedings of the 1st Conference on Hot Topics in Understanding
Botnets. USENIX Association, 2007, pp. 11–11.

[5] “Why google and publishers care about invalid traffic,” http://www.
google.ca/ads/adtrafficquality/, accessed: 2015-02-06.

[6] “How does yahoo protect me from click fraud?” http://help.yahoo.com/
l/in/yahoo/ysm/sps/faqs/click fraud.html, accessed: 2015-02-06.

[7] N. Kshetri, “The economics of click fraud,” IEEE Journal of Security
& Privacy, vol. 8, no. 3, pp. 45–53, 2010.

[8] A. Metwally, D. Agrawal, and A. E. Abbadi, “Using association rules
for fraud detection in web advertising networks,” in Proceedings of
the 31st International Conference on Very Large Databases. VLDB
Endowment, 2005, pp. 169–180.

[9] N. Immorlica, K. Jain, M. Mahdian, and K. Talwar, “Click fraud
resistant methods for learning click-through rates,” in Proceedings of
the Internet and Network Economics. Springer, 2005, pp. 34–45.

[10] H. Haddadi, “Fighting online click-fraud using bluff ads,” ACM SIG-
COMM Computer Communication Review, vol. 40, no. 2, pp. 21–25,
2010.

[11] V. Dave, S. Guha, and Y. Zhang, “Viceroi: catching click-spam in
search ad networks,” in Proceedings of the ACM SIGSAC Conference
on Computer & Communications Security. ACM, 2013, pp. 765–776.

[12] B. Schulte, H. Andrianakis, K. Sun, and A. Stavrou, “Netgator: malware
detection using program interactive challenges,” in Proceedings of the
Detection of Intrusions and Malware, and Vulnerability Assessment.
Springer, 2013, pp. 164–183.

[13] Y. Jang, S. P. Chung, B. D. Payne, and W. Lee, “Gyrus: A framework
for user-intent monitoring of text-based networked applications,” in
Proceedings of the 23rd USENIX Security Symposium, 2014, pp. 79–93.

[14] H. Xu, D. Liu, A. Koehl, H. Wang, and A. Stavrou, “Click fraud
detection on the advertiser side,” in Proceedings of the 19th European
Symposium on Research in Computer Security. Springer, 2014, pp.
419–438.

[15] J. Crussell, R. Stevens, and H. Chen, “Madfraud: investigating ad fraud
in android applications,” in Proceedings of the 12th Annual Inter-
national Conference on Mobile Systems, Applications, and Services.
ACM, 2014, pp. 123–134.

[16] “Adwatcher: Advanced click fraud detection,” http://www.adwatcher.
com/click-fraud-features.php, accessed: 2015-02-06.

[17] “Clickcease: Blocking click fraud,” https://clickcease.com/, accessed:
2015-02-06.

[18] “Clickreport: Click fruad detection and monitoring,” http://clickreport.
com/click-fraud-prevention, accessed: 2015-02-06.

[19] “The libpcap project,” http://sourceforge.net/projects/libpcap/, accessed:
2015-02-06.

[20] “Easylist ad block filter,” https://easylist.adblockplus.org/en/, accessed:
2015-02-06.

[21] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, “The weka data mining software: an update,” ACM SIGKDD
explorations newsletter, vol. 11, no. 1, pp. 10–18, 2009.

[22] J. R. Quinlan, C4. 5: Programs for machine learning. Elsevier, 2014.
[23] L. Breiman, “Random forests,” Journal of Machine Learning, vol. 45,

no. 1, pp. 5–32, 2001.
[24] “Phantomjs: Headless website browsing,” http://phantomjs.org/, ac-

cessed: 2015-01-09.
[25] “Selenium: Browser automation,” http://www.seleniumhq.org/, ac-

cessed: 2015-01-09.

